【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對價格(單位:千元/噸)和利潤的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:

1

2

3

4

5

8

6

5

4

2

已知具有線性相關關系.

(1)求關于的線性回歸方程;

(2)若每噸該農(nóng)產(chǎn)品的成本為2.2千元,假設該農(nóng)產(chǎn)品可全部賣出,預測當年產(chǎn)量為多少噸時,年利潤取到最大值?

參考公式: .

【答案】(1) ;(2)當年產(chǎn)量約為噸時,年利潤最大 .

【解析】試題分析:(1)計算得然后由系數(shù)公式得到,從而得到關于的線性回歸方程;(2)年利潤,利用二次函數(shù)圖象與性質求最值即可.

試題解析:

(1)可計算得,

,

,

關于的線性回歸方程是.

(2)年利潤

其對稱軸為,故當年產(chǎn)量約為噸時,年利潤最大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)當時,求的單調增區(qū)間;

(2)令.

①當時,若函數(shù)恰有兩個不同的零點,求的值;

②當時,若的解集為,且中有且僅有一個整數(shù),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在實數(shù)集上的函數(shù)是奇函數(shù),是偶函數(shù),且.

(1)求、的解析式;

(2)命題命題,若為真,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(xa)(xb)(其中ab),若f(x)的圖象如圖所示,則函數(shù)g(x)=axb的圖象大致為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=sin 2xcos 2x圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將圖象上所有點向右平移個單位長度,得到函數(shù)g(x)的圖象,則g(x)圖象的一條對稱軸方程是(  )

A. x=- B. x

C. x D. x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)滿足:對任意的實數(shù)存在非零常數(shù),都有成立.

(1)若函數(shù),求實數(shù)的值;

(2)當,, 求函數(shù)在閉區(qū)間上的值域;

(3)設函數(shù)的值域為,證明:函數(shù)為周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,MAA1的中點,PBC上的一點,且由P沿棱柱側面經(jīng)過棱CC1M的最短路線長為,設這條最短路線與CC1的交點為N.求:

1)該三棱柱的側面展開圖的對角線的長;

2PCNC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (是自然對數(shù)的底數(shù)), .

(1)求曲線在點處的切線方程;

(2)求的單調區(qū)間;

(3)設,其中的導函數(shù),證明:對任意.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,是正方形,平面,平面,,點M為棱的中點.

1)求證:;

2)求證:平面平面;

3)若,,求E點到平面的距離.

查看答案和解析>>

同步練習冊答案