A. | 2$\sqrt{10}$ | B. | 6 | C. | 3$\sqrt{3}$ | D. | 2$\sqrt{5}$ |
分析 點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P′坐標(biāo)是(-2,0),設(shè)點(diǎn)P關(guān)于直線AB:x+y-4=0的對(duì)稱點(diǎn)P″(a,b),|PM|+|PN|+|MN|的最小值等于|P′P″|即可求解.
解答 解:點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P′坐標(biāo)是(-2,0),設(shè)點(diǎn)P關(guān)于直線AB:x+y-4=0的對(duì)稱點(diǎn)P″(a,b),
由$\left\{\begin{array}{l}{\frac{b-0}{a-2}×(-1)=-1}\\{\frac{a+2}{2}+\frac{b+0}{2}-4=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=4}\\{b=2}\end{array}\right.$,
則P″(4,2).
那么|PM|+|PN|+|MN|的最小值等于|P′P″|=$\sqrt{(4+2)^{2}+(0-2)^{2}}=2\sqrt{10}$.
故選:A.
點(diǎn)評(píng) 本題考查了點(diǎn)關(guān)于直線對(duì)稱的問題,兩點(diǎn)之間的距離直線最短,利用對(duì)稱性把所有點(diǎn)在一條直線上.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M⊆N | B. | N⊆M | C. | M∩N={2,3} | D. | M∪N={1,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x<3} | B. | {x|x≤-2} | C. | {x|x<3} | D. | {x|x<-2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{n}{2n+1}$ | B. | $\frac{n}{2n-1}$ | C. | $\frac{n}{2n-3}$ | D. | $\frac{n}{2n+3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α∥β,則l∥m | B. | 若l∥m,則α∥β | C. | 若α⊥β,則l⊥m | D. | 若l⊥β,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com