已知函數(shù)f(x)=cosx-
1
x
(x∈R,x≠0),則f′(1)值為( 。
A、-1-sin1
B、1+sin1
C、-1+sin1
D、1-sin1
考點:導數(shù)的運算
專題:導數(shù)的概念及應(yīng)用
分析:根據(jù)導數(shù)的運算法則,先求導,再帶入求值.
解答: 解:∵f(x)=cosx-
1
x
,
∴f′(x)=-sinx+
1
x2
,
∴f′(1)=-sin1+1,
故選:D.
點評:本題主要考查了常見函數(shù)的導數(shù)和導數(shù)的運算法則,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知x>0,n∈N*,由下列結(jié)論x+
1
x
≥2,x+
4
x2
≥3,x+
27
x3
≥4,…,得到一個正確的結(jié)論可以是( 。
A、x+
n2
xn
≥n+1
B、x+
2n
xn
≥n
C、x+
nn
xn
≥n
D、x+
nn
xn
≥n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥CD,且AB=2CD,設(shè)∠DAB=θ,θ∈(0,
π
2
),以A,B為焦點且過點D的雙曲線的離心率為e1,以C,D為焦點且過點A的橢圓的離心率為e2,設(shè)e1=f(θ),e1e2=g(θ),則f(θ),g(θ)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在樣本的頻率分布直方圖中,共有8個小長方形,若最后一個小長方形的面積等于其它7個小長方形的面積和的
1
4
,且樣本容量為200,則第8組的頻數(shù)為(  )
A、40B、0.2
C、50D、0.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M是拋物線y2=16x上一點,F(xiàn)是拋物線的焦點,A在圓C:(x-3)2+(y-1)2=1上,則|MA|+|MF|的最小值為(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在四棱錐E-ABCD中,AB∥CD,∠ADC=90°,CD=3,AB=1,EA=AD=DE=2,EC=
13

(Ⅰ)求證:平面EAD⊥平面ABCD;
(Ⅱ)求二面角D-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AA1=2,AC=2,E為A1C!中點,求直線CC1與平面BCE所成角的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
a
x
(a>0).
(1)求f(x)的單調(diào)區(qū)間.
(2)判斷函數(shù)f(x)在區(qū)間(0,4)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,且底面是邊長為2的正三角形,側(cè)棱長為1,D是AC的中點.
(1)求證:B1C∥平面A1BD;
(2)求證:平面A1BD⊥平面C1BD:
(3)求直線AB1與平面A1BD所成的角的正弦值.

查看答案和解析>>

同步練習冊答案