一塊石材表示的幾何體的三視圖如圖12所示,將該石材切削、打磨,加工成球,則能得到的最大球的半徑等于( )
圖12
A.1 B.2 C.3 D.4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,在單位圓O的某一直徑上隨機(jī)的取一點(diǎn)Q,求過點(diǎn)Q且與該直徑垂直的弦長(zhǎng)長(zhǎng)度不超過1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖16所示,四棱柱ABCD A1B1C1D1的所有棱長(zhǎng)都相等,AC∩BD=O,A1C1∩B1D1=O1,四邊形ACC1A1和四邊形BDD1B1均為矩形.
(1)證明:O1O⊥底面ABCD;
(2)若∠CBA=60°,求二面角C1OB1D的余弦值.
圖16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖13所示,四棱錐PABCD中,底面是以O為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M為BC上一點(diǎn),且BM=,MP⊥AP.
(1)求PO的長(zhǎng);
(2)求二面角APMC的正弦值.
圖13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖13,四棱錐PABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)二面角DAEC為60°,AP=1,AD=,求三棱錐EACD的體積.
圖13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖15所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分別為AC,DC的中點(diǎn).
(1)求證:EF⊥BC;
(2)求二面角EBFC的正弦值.
圖15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖J112①所示,四邊形ABCD為等腰梯形,AE⊥DC,AB=AE=DC,F為EC的中點(diǎn).現(xiàn)將△DAE沿AE翻折到△PAE的位置,如圖J112②所示,且平面PAE⊥平面ABCE.
(1)求證:平面PAF⊥平面PBE;
(2)求三棱錐APBC與三棱錐EBPF的體積之比.
圖J112
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
.某班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)從成績(jī)不低于80分的學(xué)生中隨機(jī)選取2人,該2人中成績(jī)?cè)?0分以上(含90分)的人數(shù)記為X,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com