【題目】在四棱錐中,底面為菱形,側(cè)面為等邊三角形,且側(cè)面底面,,分別為、的中點(diǎn).
(1)求證:;
(2)求證:平面平面.
【答案】(1)詳見解析(2)詳見解析
【解析】
試題分析:(1)立體中證明線線垂直,一般利用線面垂直性質(zhì)定理,即先轉(zhuǎn)化為證明線面垂直,而線面垂直的證明,往往從兩個(gè)方面進(jìn)行,一是結(jié)合平幾知識(shí)尋找線線垂直,如利用等邊三角形性質(zhì)得中線垂直底邊,另一方面,結(jié)合立幾中面面垂直條件,將其轉(zhuǎn)化為線面垂直,再得線線垂直(2)證明面面垂直,實(shí)質(zhì)為證明線面垂直,而線面垂直的證明,往往從兩個(gè)方面進(jìn)行,一是結(jié)合平幾知識(shí)尋找線線垂直,如利用等邊三角形性質(zhì)得中線垂直底邊,另一方面,結(jié)合立幾中線面垂直條件得線線垂直
試題解析:證明:(1)因?yàn)?/span>△為等邊三角形,為的中點(diǎn),
所以.
又因?yàn)槠矫?/span>面,平面面,平面,
所以平面,
又因?yàn)?/span>平面,
所以.
(2)連接,因?yàn)樗倪呅?/span>為菱形,
所以.
因?yàn)?/span>,分別為,的中點(diǎn),
所以,所以.
由(1)可知,平面,
因?yàn)?/span>平面,所以.
因?yàn)?/span>,所以平面.
又因?yàn)?/span>平面,
所以平面平面
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)等腰三角形繞著底邊上的高所在的直線旋轉(zhuǎn)180度所形成的幾何體的名稱是( )
A. 圓柱 B. 圓錐 C. 圓臺(tái) D. 圓柱的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的方程是y=2x+3,則l關(guān)于y=-x對稱的直線方程是( )
A. x-2y+3=0 B. x-2y=0
C. x-2y-3=0 D. 2x-y=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列不具有相關(guān)關(guān)系的是( )
A. 單產(chǎn)不為常數(shù)時(shí),土地面積和總產(chǎn)量
B. 人的身高與體重
C. 季節(jié)與學(xué)生的學(xué)習(xí)成績
D. 學(xué)生的學(xué)習(xí)態(tài)度與學(xué)習(xí)成績
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D、E分別是AB、BB1的中點(diǎn).
(Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)AA1=AC=CB=2,AB=,求三棱錐C﹣A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},則B=( )
A. {1,-3} B. {1,0}
C. {1,3} D. {1,5}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某兒童樂園在“六一”兒童節(jié)推出了一項(xiàng)趣味活動(dòng),參加活動(dòng)的兒童需轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動(dòng)后,待轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄指針?biāo)竻^(qū)域中的數(shù),設(shè)兩次記錄的數(shù)分別為x,y.
獎(jiǎng)勵(lì)規(guī)則如下:
①若,則獎(jiǎng)勵(lì)玩具一個(gè);
②若,則獎(jiǎng)勵(lì)水杯一個(gè);
③其余情況獎(jiǎng)勵(lì)飲料一瓶.
假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個(gè)區(qū)域劃分均勻.小亮準(zhǔn)備參加此項(xiàng)活動(dòng).
(I)求小亮獲得玩具的概率;
(II)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】口袋內(nèi)裝有大小相同的紅球、白球和黑球,從中摸出一個(gè)球,摸出紅球的概率是0.42,摸出白球的概率是0.28,則摸出黑球的概率是( )
A. 0.42 B. 0.28 C. 0.7 D. 0.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一醫(yī)用放射性物質(zhì)原來質(zhì)量為a,每年衰減的百分比相同,當(dāng)衰減一半時(shí),所用時(shí)間是10年,根據(jù)需要,放射性物質(zhì)至少要保留原來的,否則需要更換.已知到今年為止,剩余的為原來的,
(1)求每年衰減的百分比;
(2)到今年為止,該放射性物質(zhì)已衰減了多少年?
(3)今后至多還能用多少年?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com