【題目】為豐富人民群眾業(yè)余生活,某市擬建設(shè)一座江濱公園,通過專家評審篩選處建設(shè)方案A和B向社會公開征集意見,有關(guān)部分用簡單隨機(jī)抽樣方法調(diào)查了500名市民對這兩種方案的看法,結(jié)果用條形圖表示如下:

(1)根據(jù)已知條件完成下面列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯誤的概率不超過的前提下認(rèn)為是否選擇方案A和年齡段有關(guān)?

(2)根據(jù)(1)的結(jié)論,能否提出一個更高的調(diào)查方法,使得調(diào)查結(jié)果更具代表性,說明理由.

附:

【答案】(Ⅰ)能在犯錯誤的概率不超過0.01的前提下認(rèn)為是否選擇方案A和年齡段有關(guān); (Ⅱ)先確定該縣中各年齡段市民的比例,再采用分層抽樣的方法進(jìn)行抽樣調(diào)查,使得調(diào)查結(jié)果更具代表性.

【解析】試題分析:(Ⅰ)根據(jù)條形圖填寫2×2列聯(lián)表,計(jì)算觀測值K2,比較臨界值得出結(jié)論;(Ⅱ)根據(jù)(Ⅰ)的結(jié)論知人們是否選擇方案A和B與是否為老年人有關(guān),抽樣方法應(yīng)考慮老年人與非老年人的比例,利用分層抽樣要好些.

試題解析:(Ⅰ)由題意得列聯(lián)表如下:

選擇方案A

選擇方案B

總計(jì)

老年人

20

180

200

非老年人

60

240

300

總計(jì)

80

420

500

假設(shè)是否選擇方案A和年齡段無關(guān),

的觀測值

所以能在犯錯誤的概率不超過0.01的前提下認(rèn)為是否選擇方案A和年齡段有關(guān).

(Ⅱ)由(Ⅰ)的結(jié)論知,市民選擇哪種方案與年齡段有關(guān),并且從樣本數(shù)據(jù)能看出老年人與非老年人選擇方案A的比例有明顯差異,因此在調(diào)查時,先確定該縣中各年齡段市民的比例,再采用分層抽樣的方法進(jìn)行抽樣調(diào)查,使得調(diào)查結(jié)果更具代表性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

)當(dāng)時,求曲線在點(diǎn)處的切線方程;

)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

)當(dāng)時,函數(shù)上的最大值為,若存在,使得成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.

現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min,在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再從B勻速步行到C.假設(shè)纜車勻速直線運(yùn)行的速度為130 m/min,山路AC長為1 260 m,經(jīng)測量,cos A=,cos C=

(1)求索道AB的長;

(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?

(3)為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形中,對角線相交于一點(diǎn) ,將沿著折起得,連接.

(1)求證:平面平面;

(2)若點(diǎn)在平面上的投影恰好是的重心,求直線與底面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,四項(xiàng)參賽作品,只評一項(xiàng)一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項(xiàng)作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))的圖象與直線相切,當(dāng)恰有一個零點(diǎn)時,實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求f(x)的解析式;
(2)若對任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,函數(shù)的圖象在點(diǎn)處的切線平行于軸.

(1)求的值;

(2)求函數(shù)的極小值;

(3)設(shè)斜率為的直線與函數(shù)的圖象交于兩點(diǎn), , ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為.以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)判斷點(diǎn)與直線的位置關(guān)系并說明理由;

(Ⅱ)設(shè)直線與曲線的兩個交點(diǎn)分別為,求的值.

查看答案和解析>>

同步練習(xí)冊答案