【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求f(x)的解析式;
(2)若對任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
【答案】
(1)解:因為f(x)是定義在R上的奇函數(shù),
所以f(0)=0,
所以f(0)= =0,所以b=1,
因為f(x)= ,
所以f(﹣x)= = .
因為f(﹣x)=﹣f(x),
所以 = ,
所以(2﹣a)(1﹣2x)=0,
所以a=2,
所以f(x)=
(2)解:因為f(t2﹣2t)+f(2t2﹣k)<0恒成立,
所以f(t2﹣2t)<﹣f(2t2﹣k)恒成立,
因為f(x)為R上的奇函數(shù),
所以f(t2﹣2t)<f(﹣2t2+k)恒成立,
因為函數(shù)f(x)在R上單調遞減,
所以t2﹣2t>﹣2t2+k恒成立,所以k<3t2﹣2t恒成立,
又因為g(t)=3t2﹣2t在R上最小值為
k<﹣
【解析】(1)在R上的奇函數(shù),f(0)=0求參數(shù);(2)不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,轉化為k<(3t2﹣2t)min求解.
科目:高中數(shù)學 來源: 題型:
【題目】已知袋中放有形狀大小相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球個,從袋中隨機抽取一個小球,取到標號為2的小球的概率為,現(xiàn)從袋中不放回地隨機取出2個小球,記第一次取出的小球標號為,第二次取出的小球標號為.
(1)記“”為事件,求事件發(fā)生的概率.
(2)在區(qū)間上任取兩個實數(shù),求事件 “恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為豐富人民群眾業(yè)余生活,某市擬建設一座江濱公園,通過專家評審篩選處建設方案A和B向社會公開征集意見,有關部分用簡單隨機抽樣方法調查了500名市民對這兩種方案的看法,結果用條形圖表示如下:
(1)根據(jù)已知條件完成下面列聯(lián)表,并用獨立性檢驗的方法分析,能否在犯錯誤的概率不超過的前提下認為是否選擇方案A和年齡段有關?
(2)根據(jù)(1)的結論,能否提出一個更高的調查方法,使得調查結果更具代表性,說明理由.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的焦點在軸上,離心率為,拋物線的焦點在軸上, 的中心和的頂點均為原點,點在上,點在上,
(1)求曲線, 的標準方程;
(2)請問是否存在過拋物線的焦點的直線與橢圓交于不同兩點,使得以線段為直徑的圓過原點?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉化,相互統(tǒng)一的和諧美.定義:能夠將圓的周長和面積同時等分成兩部分的函數(shù)稱為圓的一個“太極函數(shù)”.下列有關說法中:
①對圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)是圓的一個太極函數(shù);
③存在圓,使得是圓的太極函數(shù);
④直線所對應的函數(shù)一定是圓的太極函數(shù).
所有正確說法的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()將的圖象向右平移兩個單位,得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)若方程在上有且僅有一個實根,求的取值范圍;
(3)若函數(shù)與的圖像關于直線對稱,設,已知對任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2+ax+a﹣2=0.
(1)當該方程的一個根為1時,求a的值及該方程的另一根;
(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.
(3)設該方程的兩個實數(shù)根分別為x1 , x2 , 若2(x1+x2)+x1x2+10=0,求a的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com