【題目】已知關(guān)于x的方程x2+ax+a﹣2=0.
(1)當(dāng)該方程的一個(gè)根為1時(shí),求a的值及該方程的另一根;
(2)求證:不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.
(3)設(shè)該方程的兩個(gè)實(shí)數(shù)根分別為x1 , x2 , 若2(x1+x2)+x1x2+10=0,求a的值.
【答案】
(1)解:方程x2+ax+a﹣2=0.
當(dāng)x=1時(shí),有1+a+a﹣2=0,解得:a= .
可得2x2+x﹣3=0,
分解因式可得:(2x+3)(x﹣1)=0.
故得另一個(gè)根為
(2)證明:判別式△=b2﹣4ac=a2+4(2﹣a)=(a﹣2)2+4恒大于0.
∴方程都有兩個(gè)不相等的實(shí)數(shù)根
(3)解:根據(jù)韋達(dá)定理:x1+x2= =﹣a,x1x2= =a﹣2
那么:2(x1+x2)+x1x2+10=0,即﹣2a+a﹣2=0,
解得:a=﹣2.
故若2(x1+x2)+x1x2+10=0,則a的值為﹣2
【解析】(1)將x=1帶入方程求解a的值及該方程的另一根即可.(2)利用判別式即可證明方程都有兩個(gè)不相等的實(shí)數(shù)根.(3)利用韋達(dá)定理求解x1+x2和x1x2的值帶入2(x1+x2)+x1x2+10=0,求a的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求f(x)的解析式;
(2)若對(duì)任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人每人有一張游泳比賽的門票,已知每張票可以觀看指定的三場(chǎng)比賽中的任一場(chǎng)(三場(chǎng)比賽時(shí)間不沖突),甲乙二人約定他們會(huì)觀看同一場(chǎng)比賽并且他倆觀看每場(chǎng)比賽的可能性相同,又已知丙觀看每一場(chǎng)比賽的可能性也相同,且甲乙的選擇與丙的選擇互不影響.
(1)求三人觀看同一場(chǎng)比賽的概率;
(2)記觀看第一場(chǎng)比賽的人數(shù)是,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為.以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)判斷點(diǎn)與直線的位置關(guān)系并說明理由;
(Ⅱ)設(shè)直線與曲線的兩個(gè)交點(diǎn)分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為自然對(duì)數(shù)的底數(shù)).
(1)設(shè)曲線在處的切線為,若與點(diǎn)的距離為,求的值;
(2)若對(duì)于任意實(shí)數(shù), 恒成立,試確定的取值范圍;
(3)當(dāng)時(shí),函數(shù)在上是否存在極值?若存在,請(qǐng)求出極值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且.
(I)若,求函數(shù)的單調(diào)區(qū)間;(其中是自然對(duì)數(shù)的底數(shù))
(II)設(shè)函數(shù),當(dāng)時(shí),曲線與有兩個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點(diǎn)A(0,3),B(﹣1,0),拋物線的頂點(diǎn)為點(diǎn)D,對(duì)稱軸與x軸交于點(diǎn)E,連結(jié)BD,則拋物線表達(dá)式:BD的長(zhǎng)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖像,如圖所示,請(qǐng)補(bǔ)出完整函數(shù)f(x)的圖像,并根據(jù)圖像寫出函數(shù)f(x)的增區(qū)間;
(2)寫出函數(shù)f(x)的解析式和值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中, ,點(diǎn)分別在邊上,且, 交于點(diǎn).現(xiàn)將沿折起,使得平面平面,得到圖2.
(Ⅰ)在圖2中,求證: ;
(Ⅱ)若點(diǎn)是線段上的一動(dòng)點(diǎn),問點(diǎn)在什么位置時(shí),二面角的余弦值為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com