【題目】甲、乙、丙三人每人有一張游泳比賽的門票,已知每張票可以觀看指定的三場比賽中的任一場(三場比賽時(shí)間不沖突),甲乙二人約定他們會(huì)觀看同一場比賽并且他倆觀看每場比賽的可能性相同,又已知丙觀看每一場比賽的可能性也相同,且甲乙的選擇與丙的選擇互不影響.
(1)求三人觀看同一場比賽的概率;
(2)記觀看第一場比賽的人數(shù)是,求的分布列和期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形中, , ,將四邊形沿著折疊,得到圖2所示的三棱錐,其中.
(1)證明:平面平面;
(2)若為中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太極圖是由黑白兩個(gè)魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)A的周長和面積同時(shí)等分成兩部分的函數(shù)稱為圓的一個(gè)“太極函數(shù)”.下列有關(guān)說法中:
①對圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)是圓的一個(gè)太極函數(shù);
③存在圓,使得是圓的太極函數(shù);
④直線所對應(yīng)的函數(shù)一定是圓的太極函數(shù).
所有正確說法的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()將的圖象向右平移兩個(gè)單位,得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)若方程在上有且僅有一個(gè)實(shí)根,求的取值范圍;
(3)若函數(shù)與的圖像關(guān)于直線對稱,設(shè),已知對任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的極大值是函數(shù)的極小值的倍,并且,不等式恒成立,則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如甲圖所示,在矩形中, , , 是的中點(diǎn),將沿折起到位置,使平面平面,得到乙圖所示的四棱錐.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以元/個(gè)的價(jià)格從面包店購進(jìn)面包,然后以元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以元/個(gè)的價(jià)格賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了個(gè)面包,以(單位:個(gè), )表示面包的需求量, (單位:元)表示利潤.
(Ⅰ)求關(guān)于的函數(shù)解析式;
(Ⅱ)求食堂每天面包需求量的中位數(shù);
(Ⅲ)根據(jù)直方圖估計(jì)利潤不少于元的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+ax+a﹣2=0.
(1)當(dāng)該方程的一個(gè)根為1時(shí),求a的值及該方程的另一根;
(2)求證:不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.
(3)設(shè)該方程的兩個(gè)實(shí)數(shù)根分別為x1 , x2 , 若2(x1+x2)+x1x2+10=0,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A={x|3≤x<9},B={x|1<x<7},C={x|x>m}.
(1)求A∪B;
(2)求(RA)∩B;
(3)若BC,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com