【題目】太極圖是由黑白兩個(gè)魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)A的周長(zhǎng)和面積同時(shí)等分成兩部分的函數(shù)稱為圓的一個(gè)“太極函數(shù)”.下列有關(guān)說法中:

①對(duì)圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);

②函數(shù)是圓的一個(gè)太極函數(shù);

③存在圓,使得是圓的太極函數(shù);

④直線所對(duì)應(yīng)的函數(shù)一定是圓的太極函數(shù).

所有正確說法的序號(hào)是__________

【答案】②④

【解析】①偶函數(shù)平分圓的周長(zhǎng)和面積;②也關(guān)于圓心 對(duì)稱,平分圓的周長(zhǎng)和面積,所以函數(shù)是圓的一個(gè)太極函數(shù);③因?yàn)?/span>關(guān)于 對(duì)稱,所以圓,但此時(shí)不能平分圓的周長(zhǎng)和面積④直線恒過圓心 ,所以平分圓的周長(zhǎng)和面積,即直線所對(duì)應(yīng)的函數(shù)一定是圓的太極函數(shù).

選②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是兩條不重合的直線, 是兩個(gè)不重合的平面,給出下列命題:

①若, ,則

②若, , ,則;

③若 , ,則;

④當(dāng),且時(shí),若,則.

其中正確命題的個(gè)數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說:“是作品獲得一等獎(jiǎng)”;

乙說:“作品獲得一等獎(jiǎng)”;

丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說:“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求f(x)的解析式;
(2)若對(duì)任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個(gè)相同的零點(diǎn),則f(0)與f(1)(
A.均為正值
B.均為負(fù)值
C.一正一負(fù)
D.至少有一個(gè)等于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,函數(shù)的圖象在點(diǎn)處的切線平行于軸.

(1)求的值;

(2)求函數(shù)的極小值;

(3)設(shè)斜率為的直線與函數(shù)的圖象交于兩點(diǎn), , ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)時(shí),求函數(shù)的極值點(diǎn);

(2)若函數(shù)在區(qū)間上恒有,求實(shí)數(shù)的取值范圍;

(3)已知,且,在(2)的條件下,證明數(shù)列是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人每人有一張游泳比賽的門票,已知每張票可以觀看指定的三場(chǎng)比賽中的任一場(chǎng)(三場(chǎng)比賽時(shí)間不沖突),甲乙二人約定他們會(huì)觀看同一場(chǎng)比賽并且他倆觀看每場(chǎng)比賽的可能性相同,又已知丙觀看每一場(chǎng)比賽的可能性也相同,且甲乙的選擇與丙的選擇互不影響.

(1)求三人觀看同一場(chǎng)比賽的概率;

(2)記觀看第一場(chǎng)比賽的人數(shù)是,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點(diǎn)A(0,3),B(﹣1,0),拋物線的頂點(diǎn)為點(diǎn)D,對(duì)稱軸與x軸交于點(diǎn)E,連結(jié)BD,則拋物線表達(dá)式:BD的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案