已知復數(shù)z1滿足(1-i)z1=1+3i,z2=a-i(a∈R),其中i為虛數(shù)單位.
(1)求z1
(2)若z1是關于x的實系數(shù)方程x2-px+q=0的一個根,求實數(shù)p、q的值.
(3)若 z1-
.
z2
 | > 
2
  |z1|
,求實數(shù)a的取值范圍.
分析:(1)化簡復數(shù)為分式的形式,利用復數(shù)同乘分母的共軛復數(shù),化簡為a+bi的形式即可得到z1
(2)若z1是關于x的實系數(shù)方程x2-px+q=0的一個根,求出另一個根,利用韋達定理即可求實數(shù)p、q的值.
(3)求出|z1-
.
z2
|
的模,利用 z1-
.
z2
 | > 
2
  |z1|
,得到a的關系式,即可求實數(shù)a的取值范圍.
解答:解:(1)因為復數(shù)z1滿足(1-i)z1=1+3i,
所以z1=
1+3i
1-i
=
(1+3i)(1+i)
(1-i)(1+i)
=-1+2i
…(3分)
(2))z1是關于x的實系數(shù)方程x2-px+q=0的一個根,實系數(shù)方程虛根成對,
由韋達定理可知p=-1+2i+(-1-2i)=-2,q=(-1+2i)(-1-2i)=1+4=5,
所以p=-2,q=5…(6分)
(3)z1-
.
z2
 =(-1+2i) -(a+i) =-1-a+i
…(8分)
z1-
.
z2
 | > 
2
  |z1|
,∴(-1-a)2+1>10…(10分)
∴a<-4,或a>2故實數(shù)a的取值范圍是(-∞,-4)∪(2,+∞).…(12分)
點評:本題是中檔題,考查復數(shù)的基本運算,復數(shù)模的求法,復數(shù)方程的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1滿足(1+i)z1=-1+5i,z2=a-2-i,其中i為虛數(shù)單位,a∈R,若|z1-
.
z2
|
<|z1|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1滿足(1+i)z1=-1+5i,z2=a-2-i,(a∈R),若|z1-
.
z2
| < |z1|
,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•閘北區(qū)一模)已知復數(shù)z1滿足(1+i)z1=3+i,復數(shù)z0滿足z0z1+
.
z0
=4

(1)求復數(shù)z0;
(2)設z0是關于x的實系數(shù)方程x2-px+q=0的一個根,求p、q的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•崇明縣二模)已知復數(shù)z1滿足(1+i)z1=1+3i,z2=1-ai(a∈R)且|z1-z2|<|z1|
(1)求復數(shù)z1;
(2)求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案