如圖:是⊙的直徑,是弧的中點,,垂足為,于點.

(1)求證:=;
(2)若=4,⊙的半徑為6,求的長.
(1)證明見解析;(2).

試題分析:(1)要證,只要證,一種方法這兩個角能否放在一對全等三角形中,為此我們連接,由圓的性質(zhì)知,這里就有,要證的角對應(yīng)相等了,當然也可以證明RtΔCEORtΔBMO,從而,也能得到,由于在圓中.我們還可以交圓于點,可得到到,那么等弧所對的圓周角相等,結(jié)論得證;(2)由(1)可知,下面在中可求得,在中可求得.
試題解析:(1)證法一:連接COBD于點M,如圖1   1分
C為弧BD的中點,∴OCBD
又∵OC=OB,∴RtΔCEORtΔBMO     2分
∴∠OCE=∠OBM              3分
又∵OC=OB,∴∠OCB=∠OBC        4分
∴∠FBC=∠FCB,∴CF=BF           5分

證法二:延長CE交圓O于點N,連接BN,如圖2  1分
AB是直徑且CNAB于點E
∴∠NCB=∠CNB              2分
又∵弧CD=弧BC,∴∠CBD=∠CNB   3分
∴∠NCB=∠CBD
即∠FCB=∠CBF             4分

CF=BF                5分
(2)∵O,M分別為AB,BD的中點
OM=2=OE
EB=4                            7分
RtCOE中,            9分
∴在RtCEB中,           10分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AD∥BC,AC⊥BD,垂足為E,∠ABC=45°,過E作AD的垂線交AD于F,交BC于G,過E作AD的平行線交AB于H.求證:FG2=AF·DF+BG·CG+AH·BH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在銳角三角形ABC中,D 為C在AB上的射影,E 為D在BC上的射影,F為DE上一點,且滿足
 
(1)證明:(2)若AD=2,CD=3.DB=4,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在正△ABC中,點D,E分別在邊AC,AB上,且AD=AC,AE=AB,BD,CE相交于點F.

(1)求證:A,E,F,D四點共圓;
(2)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB為⊙O的直徑,C為⊙O上一點,AP和過C的切線互相垂直,垂足為P,過B的切線交過C的切線于T,PB交⊙O于Q,若∠BTC=120°,AB=4,則PQ·PB=(  )
A.2B.3C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使CD=AC,連結(jié)AD交圓O于點E,連結(jié)BE與AC交于點F.

(1)判斷BE是否平分∠ABC,并說明理由;
(2)若AE=6,BE=8,求EF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD中,DF⊥AB,垂足為F,DF=3,AF=2FB=2,延長FB到E,使BE=FB.連結(jié)BD、EC,若BD∥EC,求△BCD和四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,⊙O是△ABC的內(nèi)切圓,BC邊上切點為D,AB=5,BC=7,AC=6,則BD=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,切圓于點,割線經(jīng)過圓心,,繞點逆時針旋轉(zhuǎn),則的長為         .

查看答案和解析>>

同步練習冊答案