【題目】如圖C,D是以AB為直徑的圓上的兩點,,FAB上的一點,且,ABD

1)求證:平面;

2)求證:平面;

3)求三棱錐的體積.

【答案】1)證明見解析;(2)證明見解析;(3.

【解析】

1)由圓的性質知,由線面垂直性質知;根據(jù)線面垂直的判定定理可證得結論;

2)根據(jù)圓的性質知,由勾股定理可求得;由線面垂直性質知,由勾股定理求得,從而可得到,證得;根據(jù)線面平行判定定理證得結論;

3)根據(jù)比例關系可知,由線面垂直知為點到平面的距離;由體積橋可知,利用三棱錐體積公式求得結果.

1在以為直徑的圓上

平面平面

平面, 平面

(2)在以為直徑的圓上 ,又,

平面,平面 ,又

中,

平面,平面 平面

(3)

平面 到平面距離為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】 如圖是正方體的平面展開圖在這個正方體中

①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.

以上四個命題中正確命題的序號是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的極小值;

(2)求證:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象在點處的切線方程為,求的值;

(2)當時,在區(qū)間上至少存在一個,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=2px(p>0)上點M(3,m)到焦點F的距離為4.

(Ⅰ)求拋物線方程;

(Ⅱ)點P為準線上任意一點,AB為拋物線上過焦點的任意一條弦,設直線PA,PB,PF的斜率為k1,k2,k3,問是否存在實數(shù)λ,使得k1+k2=λk3恒成立.若存在,請求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側面是矩形,,,,且.

(1)求證:平面平面;

(2)設的中點,判斷并證明在線段上是否存在點,使平面,若存在,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等差數(shù)列

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若數(shù)列,求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉動如圖所示的轉盤一次,并獲得相應金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費218元,可轉動轉盤2次,所獲得的返券金額是兩次金額之和.

1)若某位顧客消費128元,求返券金額不低于30元的概率;

2)若某位顧客恰好消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù),,.

(1)討論函數(shù)的單調性;

(2)若處取得極大值,求的取值范圍.

查看答案和解析>>

同步練習冊答案