【題目】已知函數(shù) .

(1)求函數(shù)的極小值;

(2)求證:當(dāng)時(shí),.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】

1)由題意可得分類(lèi)討論函數(shù)的極小值即可.

2)令,原問(wèn)題等價(jià)于,即證.據(jù)此分類(lèi)討論三種情況即可證得題中的結(jié)論.

1

當(dāng)時(shí),即時(shí),,函數(shù)上單調(diào)遞增,無(wú)極小值;

當(dāng)時(shí),即時(shí),,函數(shù)上單調(diào)遞減;

,函數(shù)上單調(diào)遞增;

綜上所述,當(dāng)時(shí),無(wú)極小值;當(dāng)時(shí),

2)令

當(dāng)時(shí),要證:,即證,即證,

要證,即證.

①當(dāng)時(shí),

,,所以單調(diào)遞增,

,即.

,

,,

當(dāng),單調(diào)遞減;單調(diào)遞增,故,即.當(dāng)且僅當(dāng)時(shí)取等號(hào)

,

、可知

所以當(dāng)時(shí),

②當(dāng)時(shí),即證.上單調(diào)遞減,在上單調(diào)遞增,,故

③當(dāng)時(shí),當(dāng)時(shí),,由②知,而,

當(dāng)時(shí),,由②知,故;

所以,當(dāng)時(shí),.

綜上①②③可知,當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以為首項(xiàng)的數(shù)列滿足:.

(1)當(dāng)時(shí),且,寫(xiě)出、

(2)若數(shù)列是公差為-1的等差數(shù)列,求的取值范圍;

(3)記的前項(xiàng)和,當(dāng)時(shí),

①給定常數(shù),求的最小值;

②對(duì)于數(shù)列,…,,當(dāng)取到最小值時(shí),是否唯一存在滿足的數(shù)列?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2若選取的是12月1日12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+a;

3若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?

(注:,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面平面,,點(diǎn)E,F分別在線段AB,CD上,且.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在印度有一個(gè)古老的傳說(shuō):舍罕王打算獎(jiǎng)賞國(guó)際象棋的發(fā)明人——宰相宰相西薩班達(dá)依爾.國(guó)王問(wèn)他想要什么,他對(duì)國(guó)王說(shuō):“陛下,請(qǐng)您在這張棋盤(pán)的第1個(gè)小格里,賞給我1粒麥子,在第2個(gè)小格里給2粒,第3小格給4粒,以后每一小格都比前一小格加一倍.請(qǐng)您把這樣擺滿棋盤(pán)上所有的64格的麥粒,都賞給您的仆人吧!”國(guó)王覺(jué)得這要求太容易滿足了,就命令給他這些麥粒.當(dāng)人們把一袋一袋的麥子搬來(lái)開(kāi)始計(jì)數(shù)時(shí),國(guó)王才發(fā)現(xiàn):就是把全印度甚至全世界的麥粒全拿來(lái),也滿足不了那位宰相的要求.那么,宰相要求得到的麥粒到底有多少粒?下面是四位同學(xué)為了計(jì)算上面這個(gè)問(wèn)題而設(shè)計(jì)的程序框圖,其中正確的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某便利店計(jì)劃每天購(gòu)進(jìn)某品牌鮮奶若干件,便利店每銷(xiāo)售一瓶鮮奶可獲利元;若供大于求,剩余鮮奶全部退回,但每瓶鮮奶虧損元;若供不應(yīng)求,則便利店可從外調(diào)劑,此時(shí)每瓶調(diào)劑品可獲利.

(1)若便利店一天購(gòu)進(jìn)鮮奶瓶,求當(dāng)天的利潤(rùn)單位:元關(guān)于當(dāng)天鮮奶需求量單位:瓶,的函數(shù)解析式;

(2)便利店記錄了天該鮮奶的日需求量單位:瓶,整理得下表:

日需求量

頻數(shù)

若便利店一天購(gòu)進(jìn)瓶該鮮奶,以天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天利潤(rùn)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,,且底面,中點(diǎn),點(diǎn)上一點(diǎn).

1)求證: 平面;

2)求二面角 的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖C,D是以AB為直徑的圓上的兩點(diǎn),,,FAB上的一點(diǎn),且,ABD

1)求證:平面;

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬(wàn)元)對(duì)年銷(xiāo)售量(單位:噸)和年利潤(rùn)(單位:萬(wàn)元)的影響.對(duì)近六年的年宣傳費(fèi)和年銷(xiāo)售量)的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):

年份

年宣傳費(fèi)(萬(wàn)元)

年銷(xiāo)售量(噸)

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬(wàn)元)與年銷(xiāo)售量(噸)之間近似滿足關(guān)系式).對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:

1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

2)已知這種產(chǎn)品的年利潤(rùn),的關(guān)系為若想在年達(dá)到年利潤(rùn)最大,請(qǐng)預(yù)測(cè)年的宣傳費(fèi)用是多少萬(wàn)元?

附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

同步練習(xí)冊(cè)答案