【題目】圖1和圖2中所有的正方形都全等,圖1中的正方形放在圖2中的①②③④某一位置,所組成的圖形能圍成正方體的概率是( )
A. B. C. D. 1
【答案】A
【解析】
由題意,將圖1中的正方形放在圖2中的①②③④的某一位置,可得基本事件的總數(shù)為,只有圖1中的正方形放在圖2中的②③④處的某一位置時,所組成的圖形能圍成正方體,根據(jù)古典概型及其概率的計算公式,即可求解,得到答案.
由題意,如圖所示,圖1和圖2中所有的正方形都全等,將圖1中的正方形放在圖2中的①②③④的某一位置,可得基本事件的總數(shù)為,
又由圖1中的正方形放在圖2中的①處時,所以組成的圖形不能圍成正方體;
圖1中的正方形放在圖2中的②③④處的某一位置時,所組成的圖形能圍成正方體,
所以將圖1中的正方形放在圖2中的①②③④的某一位置,
所組成的圖形能圍成正方體的概率為,故選A.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)若曲線上點處的切線過點,求函數(shù)的單調(diào)減區(qū)間;
(II)若函數(shù)在區(qū)間內(nèi)無零點,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求證:BD⊥平面PAC;
(2)若PA=4,求平面PBC與平面PDC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E是AB的中點,F在CC1上,且CF=2FC1,點P是側(cè)面AA1D1D(包括邊界)上一動點,且PB1∥平面DEF,則tan∠ABP的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一個以A1B1C1為底面的直三棱柱被一平面所截得到的幾何體,截面為ABC,已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=3,CC1=2,求:
(1)該幾何體的體積.
(2)截面ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,在處的切線方程為.
(1)求, ;
(2)若,證明: .
【答案】(1), ;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導數(shù),得到關(guān)于 的方程組,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用導數(shù)研究其單調(diào)性可得
,
從而證明.
試題解析:((1)由題意,所以,
又,所以,
若,則,與矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
當時, , 單調(diào)遞減,且;
當時, , 單調(diào)遞增;且,
所以在上當單調(diào)遞減,在上單調(diào)遞增,且,
故,
故.
【點睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導數(shù)證明不等式的方法,解題時要認真審題,注意導數(shù)性質(zhì)的合理運用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(, 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點, 與原點構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在直角坐標系中,直線過點,且傾斜角為,以原點為極點,軸的正半軸為極軸,建立極坐標系,半徑為4的圓的圓心的極坐標為。
(Ⅰ)寫出直線的參數(shù)方程和圓的極坐標方程;
(Ⅱ)試判定直線和圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知P是直線l:3x+4y+8=0上的動點,PA,PB是圓C:x2+y2-2x-2y+1=0的兩條切線(A,B為切點),則四邊形PACB面積的最小值( 。
A. B. C. 2D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com