【題目】已知函數(shù), ,在處的切線方程為.
(1)求, ;
(2)若,證明: .
【答案】(1), ;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明.
試題解析:((1)由題意,所以,
又,所以,
若,則,與矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
當(dāng)時(shí), , 單調(diào)遞減,且;
當(dāng)時(shí), , 單調(diào)遞增;且,
所以在上當(dāng)單調(diào)遞減,在上單調(diào)遞增,且,
故,
故.
【點(diǎn)睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
【答案】(1);(2)
【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程為,
,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得
可得曲線C的極坐標(biāo)方程.
(2)由(1)不妨設(shè)M(),,(),
,
,
由此可求面積的最大值.
試題解析:(1)由題意可知直線的直角坐標(biāo)方程為,
曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,
所以曲線C的極坐標(biāo)方程為,
即.
(2)由(1)不妨設(shè)M(),,(),
,
,
當(dāng) 時(shí), ,
所以△MON面積的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}中, S2=16,且成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個(gè)單位長度,再向下平移個(gè)單位,得到函數(shù)的圖像。
(1)當(dāng)時(shí),若方程恰好有兩個(gè)不同的根,求的取值范圍及的值;
(2)令,若對任意都有恒成立,求的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每件一等品都能通過檢測,每件二等品通過檢測的概率為.現(xiàn)有件產(chǎn)品,其中件是一等品, 件是二等品.
(Ⅰ)隨機(jī)選取件產(chǎn)品,設(shè)至少有一件通過檢測為事件,求事件的概率;
(Ⅱ)隨機(jī)選取件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣k( +lnx)(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)). (Ⅰ)當(dāng)k≤0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,2)內(nèi)存在兩個(gè)極值點(diǎn),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙十一網(wǎng)購狂歡節(jié)”源于淘寶商城(天貓)2009年11月11 日舉辦的促銷活動,當(dāng)時(shí)參與的商家數(shù)量和促銷力度均有限,但營業(yè)額遠(yuǎn)超預(yù)想的效果,于是11月11日成為天貓舉辦大規(guī)模促銷活動的固定日期.如今,中國的“雙十一”已經(jīng)從一個(gè)節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費(fèi)用(單位:萬元)和利潤(單位:十萬元)之間的關(guān)系,得到下列數(shù)據(jù):
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)請用相關(guān)系數(shù)說明與之間是否存在線性相關(guān)關(guān)系(當(dāng)時(shí),說明與之間具有線性相關(guān)關(guān)系);
(2)根據(jù)(1)的判斷結(jié)果,建立與之間的回歸方程,并預(yù)測當(dāng)時(shí),對應(yīng)的利潤為多少(精確到0.1).
附參考公式:回歸方程中中和最小二乘估計(jì)分別為
,相關(guān)系數(shù)
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱柱ABC-A1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABC,F、F1分別是AC,A1C1的中點(diǎn).
求證:(1)平面AB1F1∥平面C1BF;
(2)平面AB1F1⊥平面ACC1A1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為, 直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程與曲線的普通方程;
(2)若是曲線上的動點(diǎn), 為線段的中點(diǎn).求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com