精英家教網 > 高中數學 > 題目詳情

【題目】某廠生產的產品在出廠前都要做質量檢測,每件一等品都能通過檢測,每件二等品通過檢測的概率為.現有件產品,其中件是一等品, 件是二等品.

(Ⅰ)隨機選取件產品,設至少有一件通過檢測為事件,求事件的概率;

(Ⅱ)隨機選取件產品,其中一等品的件數記為,求的分布列及數學期望.

【答案】(Ⅰ) ; (Ⅱ)見解析.

【解析】試題分析:

(Ⅰ)“至少有一件通過檢測”的反面是“沒有一件通過檢測”,即三件都不通過,利用互斥事件的概率可得;

(Ⅱ)求的分布列,首先要確定變量的取值,由于10件中有6件一等品,因此的取值依次為,由古典概型概率公式可得各概率,從而得分布列,再由期望公式可計算出期望.

試題解析:

(Ⅰ)

所以隨機選取3件產品,至少有一件通過檢測的概率為.

(Ⅱ)由題可知可能取值為.

, ,

, .

則隨機變量的分布列為

0

1

2

3

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】盒中有6只燈泡,其中2只次品,4只正品,有放回地從中任取兩次,每次取一只,試求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在外接圓直徑為1的△ABC中,角A,B,C的對邊分別為a,b,c,設向量 =(a,cosB), =(b,cosA),且 ,
(1)求sinA+sinB的取值范圍;
(2)若abx=a+b,試確定實數x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,多面體中,,平面,四邊形是菱形.

(1)證明:平面平面;

(2)若,設,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知隨機變量ξ的概率分布列為:

ξ

0

1

2

P

則Eξ= , Dξ=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,在處的切線方程為.

(1)求, ;

(2)若,證明: .

【答案】(1), ;(2)見解析

【解析】試題分析:1)求出函數的導數,得到關于 的方程組,解出即可;

(2)由(1)可知,

,可得,令, 利用導數研究其單調性可得

,

從而證明.

試題解析:((1)由題意,所以,

,所以,

,則,與矛盾,故, .

(2)由(1)可知,

,可得,

,

,

時, , 單調遞減,且

時, , 單調遞增;且,

所以上當單調遞減,在上單調遞增,且

,

.

【點睛本題考查利用函數的切線求參數的方法,以及利用導數證明不等式的方法,解題時要認真審題,注意導數性質的合理運用.

型】解答
束】
22

【題目】在平面直角坐標系中,曲線的參數方程為 為參數),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;

(1)求曲線的極坐標方程;

(2)在曲線上取兩點, 與原點構成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在直角坐標系中,曲線的參數方程為為參數);在極坐標系(與直角坐標系取相同的單位長度,且以原點為極點,以軸正半軸為極軸)中,直線的方程為.

(1)求曲線的普通方程和直線的直角坐標方程;

(2)求直線被曲線截得的弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若將函數 的圖象向左平移φ(φ>0)個單位,所得圖象關于原點對稱,則φ最小時,tanφ=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面,,,,,的中點.

(1)求證:;

(2)求證:;

(3)求二面角E-AB-C的正切值

查看答案和解析>>

同步練習冊答案