【題目】如圖,多面體中,,平面,四邊形是菱形.

(1)證明:平面平面;

(2)若,,設,求三棱錐的體積.

【答案】(1)見解析(2).

【解析】分析:(1)根據(jù)題的條件中平面,得到,根據(jù)菱形的性質(zhì)得到,利用線面垂直的判定定理證得線面垂直,再應用面面垂直的判定定理證得面面垂直; (2)利用題的條件,求得相應的線段長,利用棱錐的體積公式求得結果.

詳解:(1)證明:∵平面,平面,

,

∵四邊形是菱形,

,

平面,

平面,

∴平面平面.

(2)解法一:過點,

平面,

,

平面,

是三棱錐的高,

∵四邊形是菱形,,

,

,是等邊三角形,

,

得,,

,

.

解法二:∵,平面,

平面

∵四邊形是菱形,,

,是等邊三角形,

,,

,

,

到平面的距離為,

,

,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某大型商場為了了解顧客的購物信息,隨機在商場收集了位顧客的購物總額(單位元),將數(shù)據(jù)按照 , 分成組,制成了如下圖所示的頻率分布直方圖:

該商場每日大約有名顧客,為了增加商場銷售總額,近期對一次性購物不低于元的顧客發(fā)放紀念品.

(1)求頻率分布直方圖中的值,并估計每日應準備紀念品的數(shù)量;

(2)若每日按分層抽樣的方法從購物總額在三組對應的顧客中抽取名顧客,這名顧客中再隨機抽取兩名超級顧客,每人獎勵一個超級禮包,求獲得超級禮包的兩人來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學為調(diào)查來自南方和北方的同齡大學生的身高差異,從2016級的年齡在18~19歲之間的大學生中隨機抽取了來自南方和北方的大學生各10名,測量他們的身高,量出的身高如下(單位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根據(jù)抽測結果,畫出莖葉圖,對來自南方和北方的大學生的身高作比較,寫出統(tǒng)計結論.

(2)設抽測的10名南方大學生的平均身高為cm,將10名南方大學生的身高依次輸入如圖所示的程序框圖進行運算,問輸出的s大小為多少?并說明s的統(tǒng)計學意義。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公差不為零的等差數(shù)列{an}中, S2=16,且成等比數(shù)列.

(1)求數(shù)列{an}的通項公式;

(2)求數(shù)列{|an|}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若變量x,y滿足約束條件 ,且z=ax+3y的最小值為7,則a的值為(
A.1
B.2
C.﹣2
D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個單位長度,再向下平移個單位,得到函數(shù)的圖像。

(1)當時,若方程恰好有兩個不同的根,求的取值范圍及的值;

(2)令,若對任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每件一等品都能通過檢測,每件二等品通過檢測的概率為.現(xiàn)有件產(chǎn)品,其中件是一等品, 件是二等品.

(Ⅰ)隨機選取件產(chǎn)品,設至少有一件通過檢測為事件,求事件的概率;

(Ⅱ)隨機選取件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“雙十一網(wǎng)購狂歡節(jié)”源于淘寶商城(天貓)2009年11月11 日舉辦的促銷活動,當時參與的商家數(shù)量和促銷力度均有限,但營業(yè)額遠超預想的效果,于是11月11日成為天貓舉辦大規(guī)模促銷活動的固定日期.如今,中國的“雙十一”已經(jīng)從一個節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費用(單位:萬元)和利潤(單位:十萬元)之間的關系,得到下列數(shù)據(jù):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(1)請用相關系數(shù)說明之間是否存在線性相關關系(當時,說明之間具有線性相關關系);

(2)根據(jù)(1)的判斷結果,建立之間的回歸方程,并預測當時,對應的利潤為多少(精確到0.1).

附參考公式:回歸方程中最小二乘估計分別為

,相關系數(shù)

參考數(shù)據(jù):

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線過點,且,線段交圓的交點為點關于軸的對稱點.

(1)求直線的方程;

(2)已知是圓上不同的兩點,且,試證明直線的斜率為定值,并求出該定值.

查看答案和解析>>

同步練習冊答案