【題目】函數(shù)f(x)=2x2-5x-6有兩個(gè)零點(diǎn)x1,x2(x1<x2),則( ).
A.B.C.D.
【答案】C
【解析】
直接利用函數(shù)的零點(diǎn)判斷定理,求解f(0),f(1),f(2),f(3),f(4),f(5)的函數(shù)值,即可推出結(jié)果.
函數(shù)f(x)=2x2-5x-6,函數(shù)的對(duì)稱軸為x=,
函數(shù)f(x)=2x2-5x-6有兩個(gè)零點(diǎn)x1,x2,可知x1<<x2,
∴函數(shù)是連續(xù)函數(shù),∵f(0)=-6<0,
f(1)=-9<0,f(2)=-8<0,f(3)=-3<0,f(4)=12>0,f(5)=19>0,
∴f(3)f(4)<0,
根據(jù)函數(shù)的零點(diǎn)的判定定理可得:
函數(shù)f(x)=2x2-5x-6的零點(diǎn)x2所在的區(qū)間是( 3,4),
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的年平均維修費(fèi)用(萬元)(即維修費(fèi)用之和除以使用年限),有如下的統(tǒng)計(jì)資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點(diǎn)圖;
(2)求關(guān)于的線性回歸方程;
(3)估計(jì)使用年限為10年時(shí)所支出的年平均維修費(fèi)用是多少?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m∈R,命題p:對(duì)任意x∈[0,1],不等式x2﹣2x﹣1≥m2﹣3m恒成立,命題q:存在x∈[﹣1,1],使得m≤2x﹣1;
(Ⅰ)若命題p為真命題,求m的取值范圍;
(Ⅱ)若命題q為假命題,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與的直角坐標(biāo)方程;
(2)判斷曲線是否相交,若相交,求出相交弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的方程為,其焦點(diǎn)為,為過焦點(diǎn)的拋物線的弦,過分別作拋物線的切線,設(shè)相交于點(diǎn).
(1)求的值;
(2)如果圓的方程為,且點(diǎn)在圓內(nèi)部,設(shè)直線與相交于兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,為棱的中點(diǎn),.
(1)證明:平面;
(2)設(shè)二面角的正切值為,,,求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)療器械公司在全國(guó)共有個(gè)銷售點(diǎn),總公司每年會(huì)根據(jù)每個(gè)銷售點(diǎn)的年銷量進(jìn)行評(píng)價(jià)分析.規(guī)定每個(gè)銷售點(diǎn)的年銷售任務(wù)為一萬四千臺(tái)器械.根據(jù)這個(gè)銷售點(diǎn)的年銷量繪制出如下的頻率分布直方圖.
(1)完成年銷售任務(wù)的銷售點(diǎn)有多少個(gè)?
(2)若用分層抽樣的方法從這個(gè)銷售點(diǎn)中抽取容量為的樣本,求該五組,,,,,(單位:千臺(tái))中每組分別應(yīng)抽取的銷售點(diǎn)數(shù)量.
(3)在(2)的條件下,從該樣本中完成年銷售任務(wù)的銷售點(diǎn)中隨機(jī)選取個(gè),求這兩個(gè)銷售點(diǎn)不在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于,兩點(diǎn),求,兩點(diǎn)間的距離的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com