求函數(shù)f(x)=
1
4x+7
的定義域.
考點(diǎn):函數(shù)的定義域及其求法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接由分式的分母不等于0得答案.
解答: 解:由4x+7≠0,得x≠-
7
4

∴函數(shù)f(x)=
1
4x+7
的定義域是{x|x≠-
7
4
}.
點(diǎn)評(píng):本題考查了函數(shù)的定義域的求法,是基礎(chǔ)的會(huì)考題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ln(x2+ax-1)是偶函數(shù),則函數(shù)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求證:直線(xiàn)l1,l2,l3在同一平面內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和Sn=2n2+(2k-3)n-3k(k∈R),則a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a-3
a
+1=0(a>1),求
a
1
2
-a-
1
2
a
1
4
+a-
1
4
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2-4x-14y+45=0及點(diǎn)Q(6,3).
(1)若M(x,y)為圓C上任一點(diǎn),求K=
y-3
x-6
的最大值和最小值;
(2)已知點(diǎn)N(-6,3),直線(xiàn)kx-y-6k+3=0與圓C交于點(diǎn)A、B.當(dāng)k為何值時(shí)
NA
NB
取到最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列命題:
①雙曲線(xiàn)
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn);
②“-
1
2
<x<0”是“2x2-5x-3<0”必要不充分條件;
③若
a
b
共線(xiàn),則
a
、
b
所在的直線(xiàn)平行;
④?x∈R,x2-3x+3≠0.
其中是真命題的有:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某單位設(shè)計(jì)一個(gè)展覽沙盤(pán),現(xiàn)欲在沙盤(pán)平面內(nèi),鋪設(shè)一個(gè)對(duì)角線(xiàn)在L上的四邊形電氣線(xiàn)路,如圖所示.為充分利用現(xiàn)有材料,邊BC,CD用一根5米長(zhǎng)的材料彎折而成,邊BA,AD用一根9米長(zhǎng)的材料彎折而成,使A+C=180°,且AB=BC.設(shè)AB=x米,cos A=f(x).
(1)求f(x)的解析式,并指出x的取值范圍;
(2)求y=
sinA
AB
的最大值,并指出相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四面體ABCD中,平行于AB,CD的平面β截四面體所得截面為EFGH.
(1)若AB=CD=a,求證:截面EFGH為平行四邊形且周長(zhǎng)為定值.
(2)如果AB與CD所成角為θ,AB=a,CD=b是定值,當(dāng)E在AC何處時(shí)?截面EFGH的面積最大,最大值是多少?
(3)若AB到平面的距離為d1,CD到平面的距離為d2,且
d1
d2
=k,求立體圖形ABEFGH與四面體ABCD的體積之比(用k表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案