已知甲同學(xué)每投籃一次,投進(jìn)的概率均為
2
3

(1)求甲同學(xué)投籃4次,恰有3次投進(jìn)的概率;
(2)甲同學(xué)玩一個(gè)投籃游戲,其規(guī)則如下:最多投籃6次,連續(xù)2次不中則游戲終止.設(shè)甲同學(xué)在一次游戲中投籃的次數(shù)為X,求X的分布列.
(1)設(shè)“甲投籃4次,恰有3次投進(jìn)”為事件A,
P(A)=
C34
(
2
3
)3•(
1
3
)1=
32
81

(2)依題意,X的可能取值為2,3,4,5,6.
P(X=2)=
1
3
×
1
3
=
1
9

P(X=3)=
2
3
×
1
3
×
1
3
=
2
27
;
P(X=4)=(
2
3
+
1
3
2
3
×
1
3
×
1
3
=
2
27

“X=5”表示投籃5次后終止投籃,即“最后兩次投籃未進(jìn),第三次投中,第一次與第二次至少有一次投中”.
所以P(X=5)=[1-
1
3
1
3
]•
2
3
•(
1
3
)2=
16
243
;
P(X=6)=1-[P(X=2)+P(X=3)+P(X=4)+P(X=5)]=
164
243

所以,所求X的分布列為:
X23456
P
1
9
2
27
2
27
16
243
164
243
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一袋中裝有5個(gè)白球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次任取一個(gè),取出后記下顏色,若為紅色停止,若為白色則繼續(xù)抽取,停止時(shí)從袋中抽取的白球的個(gè)數(shù)為隨機(jī)變量,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為備戰(zhàn)2012奧運(yùn)會(huì),甲、乙兩位射擊選手進(jìn)行了強(qiáng)化訓(xùn)練.現(xiàn)分別從他們的強(qiáng)化訓(xùn)練期間的若干次平均成績(jī)中隨機(jī)抽取8次,記錄如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.
(1)畫(huà)出甲、乙兩位選手成績(jī)的莖葉圖;(用莖表示成績(jī)的整數(shù)部分,用葉表示成績(jī)的小數(shù)部分)
(2)現(xiàn)要從中選派一人參加奧運(yùn)會(huì),從平均成績(jī)和發(fā)揮穩(wěn)定性角度考慮,你認(rèn)為派哪位選手參加合理?簡(jiǎn)單說(shuō)明理由.
(3)若將頻率視為概率,對(duì)選手乙在今后的三次比賽成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)中不低于8.5分的次數(shù)為ξ,求ξ的分布列及均值Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為
2
3
,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為
2
5
,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分.每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.
(1)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為x,求x≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),問(wèn):他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

現(xiàn)有甲、乙兩個(gè)靶,某射手進(jìn)行射擊訓(xùn)練,每次射擊擊中甲靶的概率是p1,每次射擊擊中乙靶的概率是p2,其中p1>p2,已知該射手先后向甲、乙兩靶各射擊一次,兩次都能擊中與兩次都不能擊中的概率分別為
8
15
1
15
.該射手在進(jìn)行射擊訓(xùn)練時(shí)各次射擊結(jié)果互不影響.
(Ⅰ)求p1,p2的值;
(Ⅱ)假設(shè)該射手射擊乙靶三次,每次射擊擊中目標(biāo)得1分,未擊中目標(biāo)得0分.在三次射擊中,若有兩次連續(xù)擊中,而另外一次未擊中,則額外加1分;若三次全擊中,則額外加3分.記η為該射手射擊三次后的總的分?jǐn)?shù),求η的分布列;
(Ⅲ)某研究小組發(fā)現(xiàn),該射手在n次射擊中,擊中目標(biāo)的次數(shù)X服從二項(xiàng)分布.且射擊甲靶10次最有可能擊中8次,射擊乙靶10次最有可能擊中7次.試探究:如果X:B(n,p),其中0<p<1,求使P(X=k)(0≤k≤n)最大自然數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)暗箱中有形狀和大小完全相同的3只白球與2只黑球,每次從中取出一只球,取到白球得2分,取到黑球得3分.甲從暗箱中有放回地依次取出3只球.
(1)寫(xiě)出甲總得分ξ的分布列;
(2)求甲總得分ξ的期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為,得2分的概率為,不得分的概率為、、),已知他投籃一次得分的數(shù)學(xué)期望為2(不計(jì)其它得分情況),則的最大值為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩支排球隊(duì)進(jìn)行比賽,約定先勝局者獲得比賽的勝利,比賽隨即結(jié)束。除第五局甲隊(duì)獲勝的概率是外,其余每局比賽甲隊(duì)獲勝的概率都是。假設(shè)各局比賽結(jié)果相互獨(dú)立。
(1)分別求甲隊(duì)以勝利的概率;
(2)若比賽結(jié)果為求,則勝利方得分,對(duì)方得分;若比賽結(jié)果為,則勝利方得分、對(duì)方得分。求乙隊(duì)得分的分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某一中學(xué)生心理咨詢中心服務(wù)電話接通率為,某班3名同學(xué)商定明天分別就同一問(wèn)題詢問(wèn)服務(wù)中心,且每人只撥打一次,求他們中成功咨詢的人數(shù)X的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案