雙曲線
x2
4
-
y2
5
=1右焦點為F2,點A(3,2),P為其右支上動點,則|PF2|+|PA|的最小值是
 
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出右焦點F2(3,0),左焦點F1(-3,0),利用雙曲線的定義|PF2|=|PF1|-2a及不等式即可求得|PA|+|PF2|的最小值.
解答: 解:∵
x2
4
-
y2
5
=1,∴其實半軸a=2,半焦距c=3,
∴右焦點F2(3,0),左焦點F1(-3,0);
又點A(3,2),P為其右支上動點,
∴|PF2|=|PF1|-2a=|PF1|-4,
∴|PA|+|PF2|=|PA|+|PF1|-4
≥|AF1|-4=2
10
-4.
故答案為:2
10
-4.
點評:本題考查雙曲線的簡單性質(zhì),由雙曲線的定義將|PF2|轉(zhuǎn)化為|PF2|=|PF1|-2a是關(guān)鍵,考查分析與運算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)某種產(chǎn)品投入固定資本20萬元,以后生產(chǎn)x萬件產(chǎn)品需要再投入可變資本a(x2-1)萬元,收入資金為R(x)=160x-3.8x2-1480.2萬元,已知當生產(chǎn)10萬件產(chǎn)品時,投入生產(chǎn)資金可達到39.8萬元.
(1)判斷生產(chǎn)每件產(chǎn)品所需可變資本函數(shù)的單調(diào)性;
(2)求計劃生產(chǎn)多少件產(chǎn)品時,利潤最大?最大是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間三點A(0,2,3)B(-2,1,6)C(1,-1,5)
(1)求以AB,AC為邊的平行四行形面積.
(2)已知
a
AB
=0,
a
AC
=0且|
a
|=
3
,求
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=3,BC=2,P是腰DC上的動點,則|
PA
+3
PB
|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1的一條準線與兩條漸近線交于A、B兩點,相應(yīng)的焦點為F,若以AB為直徑的圓恰好過F點,則離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|x+1|+|
1
2
x-1|≥a的解集為R,則實數(shù)a的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(1+2x)4的展開式中,x3項的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinα+cosα的圖象的一個對稱中心是(  )
A、(
π
4
,
2
B、(
4
,-
2
C、(-
π
4
,0)
D、(
π
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足下列三個條件:
①對于任意的x∈R,都有f(x+4)=f(x);
②對于任意的0≤x1≤x2≤2,都有f(x1)<f(x2);
③函數(shù)y=f(x+2)是偶函數(shù);
則下列結(jié)論中正確的是( 。
A、f(6.5)<f(5)<f(15.5)
B、f(5)<f(6.5)<f(15.5)
C、f(5)<f(15.5)<f(6.5)
D、f(15.5)<f(5)<f(6.5)

查看答案和解析>>

同步練習(xí)冊答案