【題目】從某校高中男生中隨機選取100名學生,將他們的體重(單位: )數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.

1)估計該校的100名同學的平均體重(同一組數(shù)據(jù)以該組區(qū)間的中點值作代表);

2若要從體重在, , 三組內(nèi)的男生中,用分層抽樣的方法選取6人組成一個活動隊,再從這6人中選2人當正副隊長,求這2人中至少有1人體重在內(nèi)的概率.

【答案】12

【解析】試題分析:(1)每個小矩形的中點橫坐標與縱坐標的積之和就是該校的名同學的平均體重;(2)記體重在人為 , , 人為 , 1人為,利用列舉法求出總事件個數(shù)為種,符合條件的事件個數(shù)為,利用古典概型概率公式可得結(jié)果.

試題解析:(1)估計該校的100名同學的平均體重為:

2)由頻率分布直方圖可知體重在 , 三組內(nèi)的男生人數(shù)分別為, ,

故這三組中通過分層抽樣所抽取的人數(shù)分別為3,2,1

記體重在3人為, , 2人為, 1人為,

則從這6人中抽取2人的所有可能結(jié)果為: , , , , , , , , , , 15種,

其中體重在至少有1人的結(jié)果有: , , , , , 9種,故這2人中至少有1人體重在內(nèi)的概率為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學準備參加考試,在正式考試之前進行了十次模擬測試,測試成績?nèi)缦拢?/span>

甲:137,121,131,120,129119132,123,125,133

乙:110,130,147,127,146,114,126,110,144,146

1畫出甲、乙兩人成績的莖葉圖,求出甲同學成績的平均數(shù)和方差,并根據(jù)莖葉圖,寫出甲、乙兩位同學平均成績以及兩位同學成績的中位數(shù)的大小關(guān)系的結(jié)論;

2規(guī)定成績超過127為“良好”,現(xiàn)在老師分別從甲、乙兩人成績中各隨機選出一個,求選出成績“良好”的個數(shù)的分布列和數(shù)學期望.

(注:方差,其中的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于各項均為整數(shù)的數(shù)列,如果滿足)為完全平方數(shù),則稱數(shù)列具有“性質(zhì)”;不論數(shù)列是否具有“性質(zhì)”,如果存在與不是同一數(shù)列的,且同時滿足下面兩個條件:①的一個排列;②數(shù)列具有“性質(zhì)”,則稱數(shù)列具有“變換性質(zhì)”.

(Ⅰ)設數(shù)列的前項和,證明數(shù)列具有“性質(zhì)”;

(Ⅱ)試判斷數(shù)列和數(shù)列是否具有“變換性質(zhì)”,具有此性質(zhì)的數(shù)列請寫出相應的數(shù)列,不具此性質(zhì)的說明理由;

(Ⅲ)對于有限項數(shù)列,某人已經(jīng)驗證當)時,數(shù)列具有“變換性質(zhì)”,試證明:當時,數(shù)列也具有“變換性質(zhì)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調(diào)查銀川市某校高中生是否愿意提供志愿者服務,用簡單隨機抽樣方法從該校調(diào)查了50人,結(jié)果如下:

(1)用分層抽樣的方法在愿意提供志愿者服務的學生中抽取6人,其中男生抽取多少人?

(2)在(1)中抽取的6人中任選2人,求恰有一名女生的概率;

(3)你能否在犯錯誤的概率不超過0.010的前提下,認為該校高中生是否愿意提供志愿者服務與性別有關(guān)?

下面的臨界值表供參考:

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

獨立性檢驗統(tǒng)計量其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—5:不等式選講]

已知.

(1)若的解集為,求的值;

(2)若不等式恒成立,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某化工廠為預測產(chǎn)品的回收率,需要研究它和原料有效成分含量之間的相關(guān)關(guān)系,現(xiàn)收集了4組對照數(shù)據(jù)。

3

4

5

6

2.5

3

4

4.5

(Ⅰ)請根據(jù)相關(guān)系數(shù)的大小判斷回收率之間是否存在高度線性相關(guān)關(guān)系;

(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并預測當時回收率的值.

參考數(shù)據(jù):

1

0

其他

相關(guān)關(guān)系

完全相關(guān)

不相關(guān)

高度相關(guān)

低度相關(guān)

中度相關(guān)

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為, 上的動點到兩焦點的距離之和為4,當點運動到橢圓的上頂點時,直線恰與以原點為圓心,以橢圓的離心率為半徑的圓相切.

(1)求橢圓的方程;

(2)設橢圓的左右頂點分別為,若交直線兩點.問以為直徑的圓是否過定點?若過定點,請求出該定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的是__________(填序號)

①命題“”的否定是,

已知, , ,的最小值為;

,命題“若,則”的否命題是真命題;

④已知, ,若命題為真命題,則的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某單位的職工食堂中,食堂每天以元/個的價格從面包店購進面包,然后以元/個的價格出售.如果當天賣不完,剩下的面包以元/個的價格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了80個面包,以(單位:個,)表示面包的需求量,(單位:元)表示利潤.

(1)求關(guān)于的函數(shù)解析式;

(2)根據(jù)直方圖估計利潤不少于元的概率;

(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案