【題目】如圖,在平面直角坐標系中,已知橢圓,其右焦點F到其右準線的距離為1,離心率為,A,B分別為橢圓的上、下頂點,過點F且不與x軸重合的直線l與橢圓交于CD兩點,與y軸交于點P,直線交于點Q.

1)求橢圓的標準方程;

2)當時,求直線的方程;

3)求證:為定值.

【答案】1;(2;(3)證明見解析.

【解析】

1)根據(jù)題意列出等式:,,聯(lián)立即得解;

2)設直線l的方程為,與橢圓聯(lián)立,利用弦長公式表示,代入求解即可;

(3)設,,表示方程,聯(lián)立得到的坐標,利用韋達定理化簡,利用坐標表示,可得證.

1)解:由題意可知,所以,,所以,

所以橢圓的標準方程為

2)解:因為直線l不與x軸重合,所以斜率不為0.

因為l過點,所以設直線l的方程為.

,得.

,,則,

因為,所以,得,所以,

所以直線l的方程為

3)證明:在中令,所以.

而直線的方程為,直線的方程為.

由此得到

.

不妨設,則①,②,

所以.

將①②③代入式,得

所以為定值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】小明家的晚報在下午任何一個時間隨機地被送到,他們一家人在下午任何一個時間隨機地開始晚餐.為了計算晚報在晚餐開始之前被送到的概率,某小組借助隨機數(shù)表的模擬方法來計算概率,他們的具體做法是將每個1分鐘的時間段看作個體進行編號,編號為01編號為02,依此類推,編號為90.在隨機數(shù)表中每次選取一個四位數(shù),前兩位表示晚報時間,后兩位表示晚餐時間,如果讀取的四位數(shù)表示的晚報晚餐時間有一個不符合實際意義,視為這次讀取的無效數(shù)據(jù)(例如下表中的第一個四位數(shù)7840中的78不符合晚報時間).按照從左向右,讀完第一行,再從左向右讀第二行的順序,讀完下表,用頻率估計晚報在晚餐開始之前被送到的概率為  

7840 1160 5054 3139 8082 7732 5034 3682 4829 4052

4201 6277 5678 5188 6854 0200 8650 7584 0136 7655

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是邊長為2的菱形,∠DAB60°,ADPD,點F為棱PD的中點.

1)在棱BC上是否存在一點E,使得CF∥平面PAE,并說明理由;

2)若ACPB,二面角DFCB的余弦值為時,求直線AF與平面BCF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間上存在兩個不同零點求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知0m2,動點M到兩定點F1(﹣m,0),F2m,0)的距離之和為4,設點M的軌跡為曲線C,若曲線C過點.

1)求m的值以及曲線C的方程;

2)過定點且斜率不為零的直線l與曲線C交于A,B兩點.證明:以AB為直徑的圓過曲線C的右頂點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合S,T,SN*,TN*S,T中至少有兩個元素,且S,T滿足:

①對于任意x,yS,若xy,都有xyT

②對于任意x,yT,若x<y,則S;

下列命題正確的是(

A.S4個元素,則ST7個元素

B.S4個元素,則ST6個元素

C.S3個元素,則ST5個元素

D.S3個元素,則ST4個元素

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】政府工作報告指出,2019年我國深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,創(chuàng)新能力和效率進一步提升;2020年要提升科技支撐能力,健全以企業(yè)為主體的產(chǎn)學研一體化創(chuàng)新機制,某企業(yè)為了提升行業(yè)核心競爭力,逐漸加大了科技投入;該企業(yè)連續(xù)5年來的科技投入x(百萬元)與收益y(百萬元)的數(shù)據(jù)統(tǒng)計如下:

科技投入x

1

2

3

4

5

收益y

40

50

60

70

90

1)請根據(jù)表中數(shù)據(jù),建立y關于x的線性回歸方程;

2)按照(1)中模型,已知科技投入8百萬元時收益為140百萬元,求殘差(殘差真實值-預報值).

參考數(shù)據(jù):回歸直線方程,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在①;②;③,這三個條件中任選一個,補充在下面問題中,然后解答補充完整的題目.

在△中,內(nèi)角A,B,C所對的邊分別為.且滿足_________.

1)求

2)已知,△的外接圓半徑為,求△的邊AB上的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】質(zhì)量是企業(yè)的生命線,某企業(yè)在一個批次產(chǎn)品中隨機抽檢件,并按質(zhì)量指標值進行統(tǒng)計分析,得到表格如表:

質(zhì)量指標值

等級

頻數(shù)

頻率

三等品

10

0.1

二等品

30

一等品

0.4

特等品

20

0.2

合計

1

1)求,,;

2)從質(zhì)量指標值在的產(chǎn)品中,按照等級分層抽樣抽取6件,再從這6件中隨機抽取2件,求至少有1件特等品被抽到的概率.

查看答案和解析>>

同步練習冊答案