已知函數(shù)f(x)是奇函數(shù),且x∈(0,2)時(shí),f(x)=2x,則f(-1)=( 。
A、2
B、-2
C、
1
2
D、-
1
2
考點(diǎn):函數(shù)的值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得f(-1)=-f(1),計(jì)算求得結(jié)果.
解答: 解:∵函數(shù)f(x)是奇函數(shù),且x∈(0,2)時(shí),f(x)=2x
則f(-1)=-f(1)=-21=-2,
故選:B.
點(diǎn)評(píng):本題主要考查利用函數(shù)的奇偶性求函數(shù)的值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A,B,C是拋物線L:y2=2px(p>0)上的不同的三點(diǎn),O為坐標(biāo)原點(diǎn),直線OA∥BC,且拋物線L的準(zhǔn)線方程為x=-1.
(1)求拋物線L的方程;
(2)若△ABC的重心在直線x=-1上,求△ABC的面積取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x、y滿足約束條件
2x-y+2≥0
x≥0
y≥0
,若目標(biāo)函數(shù)z=Rx+y(R<0)取最大值的最優(yōu)解只能是﹙0,2﹚,則R的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某程序框圖如圖所示,若輸入的n=10,則輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=cos2(x-
π
12
)+sin2(x+
π
12
)-1
,下列選項(xiàng)中正確的是( 。
A、f(x)在(
π
4
π
2
)
內(nèi)是遞增的
B、f(x)的圖象關(guān)于原點(diǎn)對(duì)稱
C、f(x)的最小正周期為2π
D、f(x)的最大值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知存在正數(shù)a,b,c滿足
1
e
c
a
≤2,clnb=a+clnc,則ln
b
a
的取值范圍是(  )
A、[1,
1
2
+ln2]
B、[1,+∞)
C、(-∞,e-1]
D、[1,e-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于空間的兩條直線m、n和一個(gè)平面α,下列命題中的真命題是( 。
A、若m∥α,n∥α,則m∥n
B、若m∥α,n?α,則m∥n
C、若m∥α,n⊥α,則m∥n
D、若m⊥α,n⊥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),對(duì)?x∈R都有f(x-1)=f(x+1)成立,當(dāng)x∈(0,1]且x1≠x2時(shí),有
f(x2)-f(x1)
x2-x1
<0.給出下列命題:
(1)f(1)=0
(2)f(x)在[-2,2]上有5個(gè)零點(diǎn)
(3)(2013,0)是函數(shù)y=f(x)的一個(gè)對(duì)稱中心
(4)直線是函數(shù)y=f(x)圖象的一條對(duì)稱軸
則正確命題個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知⊙O:x2+y2=6,P為⊙O上動(dòng)點(diǎn),過(guò)P作PM⊥x軸于M,N為PM上一點(diǎn),且
PM
=
2
NM

(Ⅰ)求點(diǎn)N的軌跡C的方程;
(Ⅱ)若A(2,1),B(3,0),過(guò)B的直線與曲線C相交于D、E兩點(diǎn),則kAD+kAE是否為定值?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案