【題目】已知函數(shù), .

(1)求在區(qū)間)上的最小值

(2)當時,討論方程實數(shù)根的個數(shù).

【答案】(1);(2)見解析.

【解析】試題分析:(1)對函數(shù)進行求導(dǎo),分為兩種情形討論在區(qū)間上的單調(diào)性,故而得其最小值;(2)題意等價于零點的個數(shù),對求導(dǎo),利用導(dǎo)數(shù)得到函數(shù)的單調(diào)性,得到其大致形狀,進而得零點個數(shù).

試題解析:(1),當時, , 單減;當時, , 單增;于是,當時, 單減, 單增, ;當時, 單增, ; 因此.

(2)令,于是討論方程實數(shù)根的個數(shù),相當于討論函數(shù)零點的個數(shù).于是,①當時, ,函數(shù)為減函數(shù);注意到,所以有唯一零點. ②當時,當, ,所以函數(shù)單調(diào)遞減,在單調(diào)遞增,注意到,結(jié)合的大致圖像知,此時也有唯一零點.綜上,函數(shù)有唯一零點.即方程有唯一實數(shù)根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國式過馬路” 存在很大的交通安全隱患,某調(diào)查機構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如圖的列聯(lián)表.已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.

(1)求列聯(lián)表中的的值;
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),判斷是否有把握認為反感“中國式過馬路”與性別有關(guān)?

參考公式:,

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】五一期間,某商場決定從種服裝、種家電、種日用品中,選出種商品進行促銷活動.

(1)試求選出種商品中至少有一種是家電的概率;

(2)商場對選出的某商品采用抽獎方式進行促銷,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高元,規(guī)定購買該商品的顧客有次抽獎的機會: 若中一次獎,則獲得數(shù)額為元的獎金;若中兩次獎,則獲得數(shù)額為元的獎金;若中三次獎,則共獲得數(shù)額為 元的獎金. 假設(shè)顧客每次抽獎中獎的概率都是,請問: 商場將獎金數(shù)額最高定為多少元,才能使促銷方案對商場有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了弘揚民族文化,某校舉行了“我愛國學(xué),傳誦經(jīng)典”考試,并從中隨機抽取了100名考生的成績(得分均為整數(shù),滿足100分)進行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計概率,回答下列問題.

分組

頻數(shù)

頻率

5

0.05

0.20

35

25

0.25

15

0.15

合計

100

1.00

(1)求的值并估計這100名考生成績的平均分;

(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學(xué)校的“我愛國學(xué)”宣傳活動,求其中優(yōu)秀生的人數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線方程為.

(1)求該雙曲線的實軸長、虛軸長、離心率;

(2)若拋物線的頂點是該雙曲線的中心,而焦點是其左頂點,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是兩條不重合的直線, 是兩個不重合的平面,給出下列命題:

①若, ,則

②若, ,則;

③若 , ,則;

④當,且時,若,則.

其中正確命題的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)上單調(diào)遞減,在上單調(diào)遞增,求實數(shù)的值;

(2)是否存在實數(shù),使得上單調(diào)遞減,若存在,試求的取值范圍;若不存在,請說明理由;

(3)若,當時不等式有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點到坐標原點的距離和它到直線的距離之比是一個常數(shù)

(1)求點的軌跡;

(2)若時得到的曲線是,將曲線向左平移一個單位長度后得到曲線,過點的直線與曲線交于不同的兩點,過的直線分別交曲線于點,設(shè), , ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點,則f(0)與f(1)(
A.均為正值
B.均為負值
C.一正一負
D.至少有一個等于0

查看答案和解析>>

同步練習(xí)冊答案