【題目】在△ABC中,已知 tanAtanB﹣tanA﹣tanB= .
(1)求∠C的大小;
(2)設(shè)角A,B,C的對邊依次為a,b,c,若c=2,且△ABC是銳角三角形,求a2+b2的取值范圍.
【答案】
(1)解:依題意: ,即 .
又0<A+B<π,∴ ,
∴
(2)解:由三角形是銳角三角形可得 , 即 .
由正弦定理得 ,
∴
=
= .
∵ ,
∴ ,
∴ ,從而 .
則a2+b2的取值范圍為:( ,8]
【解析】(1)由已知中 tanAtanB﹣tanA﹣tanB= ,變形可得 ,由兩角和的正切公式,我們易得到A+B的值,進(jìn)而求出∠C的大;(2)由c=2,且△ABC是銳角三角形,再由正弦定理,我們可以將a2+b2轉(zhuǎn)化為一個只含A的三角函數(shù)式,根據(jù)正弦型函數(shù)的性質(zhì),我們易求出a2+b2的取值范圍.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握正弦定理:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=1,an+1=2an+2n .
(1)設(shè)bn= ,證明:數(shù)列{bn}是等差數(shù)列.
(2)求數(shù)列{an}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國內(nèi)某知名連鎖店分店開張營業(yè)期間,在固定的時間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前天參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計, 表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
經(jīng)過進(jìn)一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(1)若從這天中隨機(jī)抽取兩天,求至少有天參加抽獎人數(shù)超過的概率;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計若該活動持續(xù)天,共有多少名顧客參加抽獎.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上的點(diǎn),離心率.
(1)求橢圓的方程;
(2)點(diǎn)在橢圓上,若點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,連接并延長與橢圓的另一個交點(diǎn)為,連接,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國內(nèi)某知名連鎖店分店開張營業(yè)期間,在固定的時間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前天參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計, 表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
經(jīng)過進(jìn)一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)若該分店此次抽獎活動自開業(yè)始,持續(xù)天,參加抽獎的每位顧客抽到一等獎(價值元獎品)的概率為,抽到二等獎(價值元獎品)的概率為,抽到三等獎(價值元獎品)的概率為.
試估計該分店在此次抽獎活動結(jié)束時送出多少元獎品?
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前項(xiàng)和為,公差,且, 成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=2sin(﹣2x+ )的圖象向左平移 個單位后,得到的圖象對應(yīng)的解析式應(yīng)該是( )
A.y=﹣2sin(2x)
B.y=﹣2sin(2x+ )
C.y=﹣2sin(2x﹣ )
D.y=﹣2sin(2x+ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), ().
(Ⅰ)若直線和函數(shù)的圖象相切,求的值;
(Ⅱ)當(dāng)時,若存在正實(shí)數(shù),使對任意,都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調(diào)減區(qū)間;
(2)已知△ABC的內(nèi)角分別是A,B,C,A為銳角,且f( ﹣ )= ,求cosA的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com