16.若奇函數(shù)f(x)在[1,3]上是增函數(shù),且最小值是1,則它在[-3,-1]上是( 。
A.增函數(shù),最小值-1B.增函數(shù),最大值-1C.減函數(shù),最小值-1D.減函數(shù),最大值-1

分析 由奇函數(shù)在對稱區(qū)間上的單調(diào)性相同及f(-x)=-f(x)得到結(jié)論.

解答 解:由奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,∴f(x)在[-3,-1]上是增函數(shù)
又∵f(-1)=-f(1)=-1,函數(shù)f(x)在[-3,-1]上是增函數(shù),最大值-1
故選:B.

點評 本題主要考查奇偶性和單調(diào)性的綜合應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列結(jié)論正確的是①②④
①在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.35,則ξ在(0,2)內(nèi)取值的概率為0.7;
②以模型y=cekx去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè)z=lny,其變換后得到線性回歸方程z=0.3x+4,則c=e4;
③已知命題“若函數(shù)f(x)=ex-mx在(0,+∞)上是增函數(shù),則m≤1”的逆否命題是“若m>1,則函數(shù)f(x)=ex-mx在(0,+∞)上是減函數(shù)”是真命題;
④設(shè)常數(shù)a,b∈R,則不等式ax2-(a+b-1)x+b>0對?x>1恒成立的充要條件是a≥b-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域為R的函數(shù)f(x)=$\frac{n-g(x)}{2+2g(x)}$是奇函數(shù).
(1)確定y=f(x)和y=g(x)的解析式;
(2)若對任意的x∈[1,4],不等式f(2x-3)+f(x-k)>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=x2-2(a-1)x+2在區(qū)間[-1,4]上為單調(diào)函數(shù),則a的取值范圍是(-∞,0]∪[5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知兩點A(2,0),B(0,2),則以線段AB為直徑的圓的方程為(x-1)2+(y-1)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.f(x)是奇函數(shù),當x≥0時,f(x)=2x(1-x),則$f(-\frac{1}{2})$=( 。
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知4個數(shù)成等差數(shù)列,它們的和為20,中間兩項之積為24,求這個4個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列說法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.若“p或q”為假命題,則“p且q”為真命題
C.命題“存在x0∈R,使得x${\;}_{0}^{2}$+x0+1<0”的否定是:“對任意x∈R,均有x2+x+1<0”
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x|(x-a),a為實數(shù).
(1)若函數(shù)f(x)為奇函數(shù),求實數(shù)a的值;
(2)若函數(shù)f(x)在[0,2]為增函數(shù),求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a(a<0),使得f(x)在閉區(qū)間$[{-1,\frac{1}{2}}]$上的最大值為2,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案