【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車時(shí)間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時(shí)間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.
(1)若平均每趟地鐵的載客人數(shù)不超過1500人,試求發(fā)車時(shí)間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當(dāng)發(fā)車時(shí)間間隔t為多少時(shí),平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
【答案】(1)t=4.(2)當(dāng)發(fā)車時(shí)間間隔為7min時(shí),平均每趟地鐵每分鐘的凈收益最大,最大凈收益為260元.
【解析】
(1)分段考慮的解;
(2)凈收益也是分段函數(shù),將其寫出,分別考慮每段函數(shù)的在對應(yīng)的范圍內(nèi)的最大值.
解: (1)9≤t≤15時(shí),1800≤1500,不滿足題意,舍去.
4≤t<9時(shí),1800-15(9-t)2≤1500,即
解得t≥9+2(舍)或t≤9-2
∵4≤t <9,t∈N.
∴t=4.
(2)由題意可得
4≤t <9,t =7時(shí),=260(元)
9≤t≤15,t =9時(shí),=220(元)
答:(1)若平均每趟地鐵的載客人數(shù)不超過1500人,發(fā)車時(shí)間間隔為4min.
(2)問當(dāng)發(fā)車時(shí)間間隔為7min時(shí),平均每趟地鐵每分鐘的凈收益最大,最大凈收益為260元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,,,平面平面,為棱上一點(diǎn)(不與、重合),平面交棱于點(diǎn).
(1)求證:;
(2)若二面角的余弦值為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,過橢圓右焦點(diǎn)的最短弦長是,且點(diǎn)在橢圓上.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點(diǎn)滿足:,其中,是橢圓上的點(diǎn),直線與直線的斜率之積為,求點(diǎn)的軌跡方程并判斷是否存在兩個(gè)定點(diǎn)、,使得為定值?若存在,求出定值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
(Ⅰ)過點(diǎn)的直線被圓截得的弦長為8,求直線的方程;
(Ⅱ)當(dāng)取何值時(shí),直線與圓相交的弦長最短,并求出最短弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的方程為,曲線是以坐標(biāo)原點(diǎn)為頂點(diǎn),直線為準(zhǔn)線的拋物線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)分別求出直線與曲線的極坐標(biāo)方程:
(2)點(diǎn)是曲線上位于第一象限內(nèi)的一個(gè)動點(diǎn),點(diǎn)是直線上位于第二象限內(nèi)的一個(gè)動點(diǎn),且,請求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上動點(diǎn)到點(diǎn)距離比它到直線距離少1.
(1)求動點(diǎn)的軌跡方程;
(2)記動點(diǎn)的軌跡為曲線,過點(diǎn)作直線與曲線交于兩點(diǎn),點(diǎn),延長,,與曲線交于,兩點(diǎn),若直線,的斜率分別為,,試探究是否為定值?若為定值,請求出定值,若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射手射擊1次,擊中目標(biāo)的概率是0.9,他連續(xù)射擊4次,且各次射擊是否擊中目標(biāo)相互之間沒有影響,有下列結(jié)論:
①他第3次擊中目標(biāo)的概率是0.9;
②他恰好擊中目標(biāo)3次的概率是;
③他至少擊中目標(biāo)1次的概率是;
④他至多擊中目標(biāo)1次的概率是
其中正確結(jié)論的序號是( )
A.①②③B.①③
C.①④D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為的正方體中,為的中點(diǎn),為上任意一點(diǎn),,為上兩動點(diǎn),且的長為定值,則下面四個(gè)值中不是定值的是( )
A.點(diǎn)到平面的距離B.直線與平面所成的角
C.三棱錐的體積D.二面角的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線方程是,求函數(shù)在上的值域;
(2)當(dāng)時(shí),記函數(shù),若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com