【題目】某房地產(chǎn)商建有三棟樓宇,三樓宇間的距離都為2千米,擬準備在此三樓宇圍成的區(qū)域外建第四棟樓宇,規(guī)劃要求樓宇對樓宇的視角為,如圖所示,假設(shè)樓宇大小高度忽略不計.

(1)求四棟樓宇圍成的四邊形區(qū)域面積的最大值;

(2)當樓宇與樓宇,間距離相等時,擬在樓宇,間建休息亭,在休息亭和樓宇,間分別鋪設(shè)鵝卵石路和防腐木路,如圖,已知鋪設(shè)鵝卵石路、防腐木路的單價分別為,(單位:元千米,為常數(shù)).記,求鋪設(shè)此鵝卵石路和防腐木路的總費用的最小值.

【答案】(1)圍成的四邊形區(qū)域 的面積的最大值 平方千米;(2)總費用的最小值元.

【解析】

(1)由樓宇對樓宇的視角為得樓宇D在一段圓弧上,則相等時,可得最大,固定,計算此時四邊形的面積即可.

(2)用表示出,,從而表示出鋪設(shè)此鵝卵石路和防腐木路的總費:,再利用導(dǎo)數(shù)判斷的單調(diào)性,從而求得它的最小值,問題得解.

(1)當且僅當:時,取得等號,所以的最大值為

又因為四邊形的面積

所以四邊形的面積的最大值為.

答:四棟樓宇圍成的四邊形區(qū)域的面積的最大值平方千米.

(2)當樓宇與樓宇間距離相等時

由(1)得:

,又因為,所以,因為等邊三角形

所以,所以

中,,所以

,則

所以鋪設(shè)鵝卵石路和防腐木路的總費用

因為,所以

-

0

+

極小值

所以當時,

即:的最小值為

答:鋪設(shè)此鵝卵石路和防腐木路的總費用的最小值元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),在以直角坐標系的原點為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(Ⅰ)求曲線的直角坐標方程和直線的普通方程;

(Ⅱ)若直線與曲線相交于, 兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為的橢圓的左頂點為,左焦點為,及點,且、、成等比數(shù)列.

1)求橢圓的方程;

2)斜率不為的動直線過點且與橢圓相交于、兩點,記,線段上的點滿足,試求為坐標原點)面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在新型冠狀病毒疫情期間,商業(yè)活動受到很大影響某小型零售連鎖店總部統(tǒng)計了本地區(qū)50家加盟店2月份的零售情況,統(tǒng)計數(shù)據(jù)如圖所示.據(jù)估計,平均銷售收入比去年同期下降40%,則去年2月份這50家加盟店的平均銷售收入約為(

A.6.6萬元B.3.96萬元C.9.9萬元D.7.92萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一批蘋果中,隨機抽取50個,其重量(單位:克)的頻數(shù)分布表如下:

1)根據(jù)頻數(shù)分布表計算蘋果的重量在的頻率;

2)用分層抽樣的方法從重量在的蘋果中共抽取4個,其中重量在的有幾個?

3)在(2)中抽出的4個蘋果中,任取2個,寫出所有可能的結(jié)果,并求重量在中各有1個的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)你有一筆資金,現(xiàn)有三種投資方案,這三種方案的回報如下:

方案一:每天回報40元;

方案二:第一天回報10元,以后每天比前一天多回報10元;

方案三:第一天回報0.4元,以后每天的回報比前一天翻一番.

現(xiàn)打算投資10天,三種投資方案的總收益分別為,,則( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求證:當時,;

(Ⅱ)若存在,使,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓,拋物線,點A是橢圓與拋物線的交點,過點A的直線l交橢圓于點B,交拋物線MB,M不同于A).

(Ⅰ)若,求拋物線的焦點坐標;

(Ⅱ)若存在不過原點的直線l使M為線段AB的中點,求p的最大值.

查看答案和解析>>

同步練習(xí)冊答案