【題目】已知函數(shù)的圖象過(guò)點(diǎn),且在點(diǎn)處的切線(xiàn)斜率為8

1)求的值;

2)求函數(shù)的單調(diào)區(qū)間;

3)求函數(shù)在區(qū)間上的最大值與最小值.

【答案】1a=4,b=3;(2)函數(shù)f(x)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(3)函數(shù)f(x)[1,1]上的最大值為6,最小值為

【解析】

(1)由已知,利用f(1)=2,解方程求解即可;

(2) 求出,分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;

(3)(2),函數(shù)f(x)處取得極小值,結(jié)合,比較大小即可得結(jié)果.

(1)

可得

∵函數(shù)的圖象過(guò)點(diǎn)P(1,2)

f (1)=2,∴a+b=1

又函數(shù)在點(diǎn)處的切線(xiàn)斜率為8,

解得 a=4,b= 3,

(2)(1),

f ′(x)>0, x<3 ,

f ′(x)<0,

函數(shù)f (x)的單調(diào)增區(qū)間為

函數(shù)f (x)的單調(diào)減區(qū)間為

(3)(2),又函數(shù)f(x)處取得極小值,

所以函數(shù)f(x)[1,1]上的最大值為6,最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,且2sin2A+3cos(B+C)=0.

(1)求角A的大。

(2)若△ABC的面積S=,求sinB+sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】挑選空間飛行員可以說(shuō)是“萬(wàn)里挑一”,要想通過(guò)需要五關(guān):目測(cè)、初檢、復(fù)檢、文考(文化考試)、政審.若某校甲、乙、丙三位同學(xué)都順利通過(guò)了前兩關(guān),根據(jù)分析甲、乙、丙三位同學(xué)通過(guò)復(fù)檢關(guān)的概率分別是0.5、0.6、0.75,能通過(guò)文考關(guān)的概率分別是0.6、0.5、0.4,由于他們平時(shí)表現(xiàn)較好,都能通過(guò)政審關(guān),若后三關(guān)之間通過(guò)與否沒(méi)有影響.

1)求甲被錄取成為空軍飛行員的概率;

2)求甲、乙、丙三位同學(xué)中恰好有一個(gè)人通過(guò)復(fù)檢的概率;

3)設(shè)只要通過(guò)后三關(guān)就可以被錄取,求錄取人數(shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P﹣ABCD中,四邊形ABCD是菱形,∠BAD=60°,又PD⊥平面ABCD,點(diǎn)E是棱AD的中點(diǎn),F(xiàn)在棱PC上,且AD=PD=4.

(1)證明:平面BEF⊥平面PAD;

(2)若PA∥平面BEF,求四棱錐F﹣BCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐,,底面正三角形.

證明;

)若平面,求二面余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)若展開(kāi)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為128,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù);

2)若展開(kāi)式前三項(xiàng)的二項(xiàng)式系數(shù)和等于37,求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來(lái)越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線(xiàn)路運(yùn)行時(shí),發(fā)車(chē)時(shí)間間隔t(單位:分鐘)滿(mǎn)足:,平均每趟地鐵的載客人數(shù)(單位:人)與發(fā)車(chē)時(shí)間間隔近似地滿(mǎn)足下列函數(shù)關(guān)系:,其中

1)若平均每趟地鐵的載客人數(shù)不超過(guò)1000人,試求發(fā)車(chē)時(shí)間間隔t的值;

2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問(wèn)當(dāng)發(fā)車(chē)時(shí)間間隔t為多少分鐘時(shí),平均每趟地鐵每分鐘的凈收益最大? 并求出最大凈收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程是為參數(shù)),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,且直線(xiàn)與曲線(xiàn)交于,兩點(diǎn)

(1)求曲線(xiàn)的普通方程及直線(xiàn)恒過(guò)的定點(diǎn)的坐標(biāo);

(2)在(1)的條件下,若,求直線(xiàn)的普通方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,那么概率為的事件是(

A.至多一件一等品B.至少一件一等品

C.至多一件二等品D.至少一件二等品

查看答案和解析>>

同步練習(xí)冊(cè)答案