【題目】設(shè)函數(shù)f(x)=﹣ sinx cosx+1 (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[0, ],且f(x)= ,求cosx的值.
【答案】解:(Ⅰ)函數(shù)f(x)=﹣ sinx cosx+1=﹣sin(x+ )+1,故該函數(shù)的最小正周期為2π, 令2kπ+ ≤x+ ≤2kπ+ ,求得2kπ+ ≤x≤2kπ+ ,可得函數(shù)的增區(qū)間為[2kπ+ ,2kπ+ ],k∈Z.
(Ⅱ)若x∈[0, ],則x+ ∈[ , ],又f(x)= ,即﹣sin(x+ )+1= ,即sin(x+ )= ,
∴cos(x+ )=± =± .
若cos(x+ )=﹣ ,則cosx=cos[(x+ )﹣ ]=cos(x+ ) cos +sin(x+ ) sin =﹣ + = <0,不合題意,舍去.
若cos(x+ )= ,則cosx=cos[(x+ )﹣ ]=cos(x+ ) cos +sin(x+ ) sin = + = .
綜上可得,cosx= .
【解析】(Ⅰ)利用兩角和的正弦公式化簡(jiǎn)函數(shù)f(x)的解析式,再利用正弦函數(shù)的周期性和單調(diào)性,求得函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.(Ⅱ)若x∈[0, ],利用同角三角函數(shù)的基本關(guān)系、兩角差的余弦公式,求得cosx的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦函數(shù)的單調(diào)性的相關(guān)知識(shí)可以得到問題的答案,需要掌握正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),離心率等于 ,它的一個(gè)短軸端點(diǎn)恰好是拋物線x2=8 y的焦點(diǎn).
(1)求橢圓C的方程;
(2)已知P(2,m)、Q(2,﹣m)(m>0)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn),
①若直線AB的斜率為 ,求四邊形APBQ面積的最大值;
②當(dāng)A、B運(yùn)動(dòng)時(shí),滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△O′A′B′是一平面圖形的直觀圖,直角邊O′B′=1,則這個(gè)平面圖形的面積是( )
A.
B.1
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:(4x﹣3)2≤1;命題q:x2﹣(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn),與軸交于點(diǎn).
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C: =1(a>b>0)的離心率為 ,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為 .
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn).求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè)().對(duì)任意,,,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢測(cè)某種產(chǎn)品的質(zhì)量(單位:千克),抽取了一個(gè)容量為N的樣本,整理得到的數(shù)據(jù)作出了頻率分布表和頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[17.5,20) | 10 | 0.05 |
[20,225) | 50 | 0.25 |
[22.5,25) | a | b |
[25,27.5) | 40 | c |
[27.5,30] | 20 | 0.10 |
合計(jì) | N | 1 |
(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求頻率分布直方圖中d的值;
(Ⅲ)從該產(chǎn)品中隨機(jī)抽取一件,試估計(jì)這件產(chǎn)品的質(zhì)量少于25千克的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com