已知函數(shù)f(x)=x-
4
x
-(4a+
1
a
)lnx,g(x)=a-
4
a
-(4x+
1
x
)lna(x>0),其中a是正常數(shù).若f′(1)=g′(
1
2
),求a的值.
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:需求函數(shù)f(x)與g(x)的導(dǎo)函數(shù),再由f′(1)=g′(
1
2
)可求出答案.
解答: 解:由函數(shù)f(x)=x-
4
x
-(4a+
1
a
)lnx,g(x)=a-
4
a
-(4x+
1
x
)lna(x>0)
知函數(shù)f′(x)=1+
4
x2
-(4a+
1
a
1
x
,g′(x)=-(4-
1
x2
)lna,
則f′(1)=5-(4a+
1
a
),g′(
1
2
)=0,
又由f′(1)=g′(
1
2
),則5-(4a+
1
a
)=0,
解得a=1或a=
1
4
,
故a的值為1或
1
4
點(diǎn)評(píng):解決此類問題的關(guān)鍵是熟悉導(dǎo)數(shù)的運(yùn)算公式與函數(shù)解析式的求解方法以及常用函數(shù)解析式的結(jié)構(gòu)特征.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(a,b)關(guān)于直線l的對(duì)稱點(diǎn)為P′(b+1,a-1),則圓C:x2+y2-6x-2y=0關(guān)于直線L對(duì)稱的圓C′的方程為( 。
A、(x-2)2+(y-2)2=10
B、(x-2)2-(y-2)2=10
C、(x-2)2+(y+2)2=10
D、(x+2)2+(y-2)2=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左焦點(diǎn)F1(-2
3
,0),其長(zhǎng)軸長(zhǎng)和短軸長(zhǎng)之和為12.求此橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:
4x-1
4x+1
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
1
2
ax2-x-lnx

(1)當(dāng)a=2時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=a,an+1=1+
1
an
.若
3
2
<an<2(n≥4),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=-x2+2ax在x∈(1,2)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=0,an+1+Sn=n2+2n(n=1,2,3,…),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,1),
b
=(sinx,-cosx),x∈(0,π﹚,若
a
b
,則cosx的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案