【題目】已知函數(shù)f(x)=loga ,(a>0,且a≠1),
(1)求函數(shù)f(x)的定義域.
(2)求使f(x)>0的x的取值范圍.

【答案】
(1)解: ,解得x>0,所以函數(shù)的定義域?yàn)椋?,+∞)
(2)解:根據(jù)題意,㏒a >0,

當(dāng)a>1時(shí), >1x>1;

當(dāng)0<a<1時(shí), <1且x>00<x<1


【解析】(1)利用對數(shù)的真數(shù)大于0,被開方數(shù)大于等于0求出定義域.(2)通過對底數(shù)a分類討論;利用函數(shù)的單調(diào)性將對數(shù)函數(shù)符號脫去,求出x的范圍.
【考點(diǎn)精析】本題主要考查了對數(shù)函數(shù)的定義域和對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)的相關(guān)知識點(diǎn),需要掌握對數(shù)函數(shù)的定義域范圍:(0,+∞);過定點(diǎn)(1,0),即x=1時(shí),y=0;a>1時(shí)在(0,+∞)上是增函數(shù);0>a>1時(shí)在(0,+∞)上是減函數(shù)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=2sin(3x ),有下列命題:①其表達(dá)式可改寫為y=2cos(3x );②y=f(x)的最小正周期為 ;③y=f(x)在區(qū)間( )上是增函數(shù);④將函數(shù)y=2sin3x的圖象上所有點(diǎn)向左平行移動(dòng) 個(gè)單位長度就得到函數(shù)y=f(x)的圖象.其中正確的命題的序號是(注:將你認(rèn)為正確的命題序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(﹣1,1)上的函數(shù)f(x)滿足: ,當(dāng)x∈(﹣1,0)時(shí),有f(x)>0,且 .設(shè) ,則實(shí)數(shù)m與﹣1的大小關(guān)系為(
A.m<﹣1
B.m=﹣1
C.m>﹣1
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga ,(a>0且a≠1).
(1)判斷f(x)的奇偶性,并加以證明;
(2)是否存在實(shí)數(shù)m使得f(x+2)+f(m﹣x)為常數(shù)?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 對任意n∈N* , 點(diǎn)(an , Sn)都在函數(shù) 的圖象上.
(1)求數(shù)列{an}的首項(xiàng)a1和通項(xiàng)公式an;
(2)若數(shù)列{bn}滿足 ,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)已知數(shù)列{cn}滿足 .若對任意n∈N* , 存在 ,使得c1+c2+…+cn≤f(x)﹣a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù).

(1)求證: ;

(2)若恒成立,求的最大值與的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[(﹣2,0)∪(0,2)]上的奇函數(shù),當(dāng)x>0,f(x)的圖象如圖所示,那么f(x)的值域是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:xA,且A={x|a﹣1xa+1},命題q:xB,且B={x|x2﹣4x+3≥0}

(Ⅰ)若A∩B=A∪B=R,求實(shí)數(shù)a的值;

(Ⅱ)若p是q的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)若 ,且函數(shù) 在區(qū)間 上單調(diào)遞增,求實(shí)數(shù)a的范圍;

2)若函數(shù)有兩個(gè)極值點(diǎn) , 且存在 滿足 ,令函數(shù) ,試判斷 零點(diǎn)的個(gè)數(shù)并證明.

查看答案和解析>>

同步練習(xí)冊答案