【題目】某廠生產(chǎn)某種產(chǎn)品的固定成本(固定投入)為2500元,已知每生產(chǎn)x件這樣的產(chǎn)品需要再增加可變成本C(x)=200x+x3(元),若生產(chǎn)出的產(chǎn)品都能以每件500元售出,要使利潤最大,該廠應(yīng)生產(chǎn)多少件這種產(chǎn)品?最大利潤是多少?
【答案】要使利潤最大,該廠應(yīng)生產(chǎn)60件這種產(chǎn)品,最大利潤為9 500元.
【解析】試題分析:
利用題意得到利潤函數(shù) ,結(jié)合導(dǎo)函數(shù)研究原函數(shù)可得要使利潤最大,該廠應(yīng)生產(chǎn)60件這種產(chǎn)品,最大利潤為9 500元.
試題解析:
設(shè)該廠生產(chǎn)x件這種產(chǎn)品利潤為L(x)
則L(x)=500x-2 500-C(x)=500x-2 500-=300x-x3-2 500(x∈N)
令L′(x)=300-x2=0,得x=60(件)
又當0≤x<60時,L′(x)>0,x>60時,L′(x)<0
所以x=60是L(x)的極大值點,也是最大值點.
所以當x=60時,L(x)=9 500元.
答:要使利潤最大,該廠應(yīng)生產(chǎn)60件這種產(chǎn)品,最大利潤為9 500元.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R. (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)存在極值點x0 , 且f(x1)=f(x0),其中x1≠x0;求證:x1+2x0=0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù){an}滿a1=0,an+1=an+2n,那a2016的值是( )
A.2014×2015
B.2015×2016
C.2014×2016
D.2015×2015
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)判斷并證明函數(shù)的單調(diào)性;
(2)若函數(shù)為奇函數(shù),求實數(shù)的值;
(3)在(2)條件下,若對任意的正數(shù),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+)(ω>0,||<)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 2 | -2 | 0 |
(1)請將上表數(shù)據(jù)補充完整,填寫在答題卷上相應(yīng)位置,并直接寫出函數(shù)f(x)的解析式;
(2)若f()=,求cos(2α+)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長A1C1至點P,使C1P=A1C1 , 連接AP交棱CC1于點D. (Ⅰ)求證:PB1∥平面BDA1;
(Ⅱ)求二面角A﹣A1D﹣B的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求曲線在點處的切線方程;
(2)在(1)的條件下,求證:;
(3)當時,求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四們同學一起去向老師詢問數(shù)學學業(yè)水平考試成績等級. 老師說:“你們四人中有2人等,1人等,1人等,我現(xiàn)在給甲看乙、丙的成績等級,給乙看丙的成績等級,給丙看丁的成績等級”.看后甲對大家說:“我知道我的成績等級了”.根據(jù)以上信息,則( )
A. 甲、乙的成績等級相同 B. 丁可以知道四人的成績等級
C. 乙、丙的成績等級相同 D. 乙可以知道四人的成績等級
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com