分析 (Ⅰ)對(duì)f(x)求導(dǎo),利用導(dǎo)數(shù)來判斷f(x)的圖形單調(diào)性;
(Ⅱ)(i)函數(shù)f(x)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn)轉(zhuǎn)化為:方程lnx-ax=0在x>0上有兩個(gè)不同根.
(ii)x1,x2分別是方程lnx-ax=0的兩個(gè)根,即lnx1=ax1,lnx2=ax2;不妨設(shè)x1>x2,作差得,lnx1x2=a(x1-x2),即a=lnx1x2x1−x2.原不等式x1•x2>e2等價(jià)于lnx1+lnx2>2?a(x1+x2)>2?lnx1x2>2(x1−x2)x1+x2.
解答 解:(Ⅰ)當(dāng)a=0時(shí),f(x)=xlnx-x.
函數(shù)f(x)的定義域?yàn)閤>0,f'(x)=lnx;
當(dāng)x>1時(shí),f'(x)>0;當(dāng)0<x<1時(shí),f'(x)<0.
所以,f(x)在(0,1)上單調(diào)遞減;在(1,+∞)上單調(diào)遞增.
(Ⅱ) (�。┮李}意,函數(shù)f(x)的定義域?yàn)閤>0,f'(x)=lnx-ax
所以方程f'(x)=0在x>0上有兩個(gè)不同根,即:
方程lnx-ax=0在x>0上有兩個(gè)不同根,轉(zhuǎn)化為:函數(shù)y=lnx與函數(shù)y=ax
的圖象在x>0上有兩個(gè)不同交點(diǎn),如圖.
可見,若令過原點(diǎn)且切于函數(shù)y=lnx圖象的直線斜率為k,只須0<a<k.
令切點(diǎn)A(x0,lnx0),所以k=1x0,又k=lnx0x0,所以1x0=lnx0x0,
解得:x0=e,于是k=1e,
所以,0<a<1e.(ⅱ)由(i)可知x1,x2分別是方程lnx-ax=0的兩個(gè)根,
即lnx1=ax1,lnx2=ax2,
不妨設(shè)x1>x2,作差得,lnx1x2=a(x1-x2),即a=lnx1x2x1−x2.
原不等式x1•x2>e2
等價(jià)于lnx1+lnx2>2?a(x1+x2)>2?lnx1x2>2(x1−x2)x1+x2
令x1x2=t,則t>1,lnx1x2>2(x1−x2)x1+x2?lnt>2(t−1)t+1
設(shè)g(t)=lnt−2(t−1)t+1,t>1,g′(t)=(t−1)2t(t+1)2>0,
∴函數(shù)g(t)在(1,+∞)上單調(diào)遞增,
∴g(t)>g(1)=0,
即不等式lnt>2(t−1)t+1成立,
故所證不等式x1•x2>e2成立.
點(diǎn)評(píng) 本題主要考查了導(dǎo)數(shù)研究函數(shù)的單調(diào)性,方程與函數(shù)思想,轉(zhuǎn)化思想,屬中等題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sin(x+π3) | B. | sin(x+π6) | C. | 2sin(x+π3) | D. | 2sin(x+π6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25,0.56 | B. | 20,0.56 | C. | 25,0.50 | D. | 13,0.29 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不存在 x0∈R,2x0>0 | B. | 對(duì)任意的x0∈R,2x0>0 | ||
C. | 對(duì)任意的 x0∈R,2x0≤0 | D. | 存在 x0∈R,2x0≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|34≤x<2} | B. | {x|13≤x<2} | C. | {x|x>2或x<13} | D. | {x|x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | √32 | B. | √3 | C. | 72 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com