分析 (1)由題意可兒數(shù)列{an}的公差d的值,進(jìn)而可得首項,可得通項公式;
(2)利用等差數(shù)列的前n項和公式得到Sn=na1+$\frac{n(n-1)}{2}$d=-n2+4n>0.由此求得n的取值范圍.
解答 解:(1)設(shè){an}的公差為d,
由已知條件得,d=$\frac{{a}_{5}-{a}_{2}}{5-2}$=-2,故a1=1-(-2)=3,
故{an}的通項公式為:an=a1+(n-1)d=-2n+5.
(2)Sn=na1+$\frac{n(n-1)}{2}$d=-n2+4n
令Sn>0,得-n2+4n>0,
解得:0<n<4.
∵n∈N+,
∴n=1,2,3.
點(diǎn)評 本題考查了等差數(shù)列的性質(zhì),考查了等差數(shù)列的前n項和,是基礎(chǔ)的計算題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\sqrt{2}$,$\sqrt{3}$) | B. | ($\sqrt{2}$,2) | C. | (1,$\sqrt{3}$) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com