【題目】在平面直角坐標(biāo)系中,由經(jīng)過伸縮變換得到曲線,以原點為極點,軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,與曲線、曲線在第一象限交于、,且,點的極坐標(biāo)為,求的面積.

【答案】1;x22+y24;(2

【解析】

1)直接利用伸縮變換的應(yīng)用和參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換求出結(jié)果.

2)利用三角俺和你熟關(guān)系式的變換和極徑的應(yīng)用及三角形的面積公式的應(yīng)用求出結(jié)果.

解:(1)平面直角坐標(biāo)系中,由經(jīng)過伸縮變換得到曲線,得到直角坐標(biāo)方程為

根據(jù)轉(zhuǎn)換為極坐標(biāo)方程為

曲線的極坐標(biāo)方程為.根據(jù)轉(zhuǎn)換為直角坐標(biāo)方程為

(2)由于得到:,

整理得

由于,

所以,

故:,解得

所以

則:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:①“”是“”的充分不必要條件;②命題“,”的否定是“”;③小趙、小錢、小孫、小李到4個景點旅游,每人只去一個景點,設(shè)事件為“4個人去的景點不相同”,事件為“小趙獨自去一個景點”,則;④設(shè),其正態(tài)分布密度曲線如圖所示,那么向正方形中隨機(jī)投擲10000個點,則落入陰影部分的點的個數(shù)的估計值是6587.(注:若,則,)其中正確說法的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平分...

1)設(shè)E的中點,求證:平面;

2)設(shè)平面,若與平面所成的角為45°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線相交于A,B兩點,且與圓相切.

1)求直線x軸上截距的取值范圍;

2)設(shè)F是拋物線的焦點,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角A,B,C所對的邊分別是a,b,c,其面積S

1)若a,b,求cosB

2)求sinA+B+sinBcosB+cosBA)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省即將實行新高考,不再實行文理分科.某校為了研究數(shù)學(xué)成績優(yōu)秀是否對選擇物理有影響,對該校2018級的1000名學(xué)生進(jìn)行調(diào)查,收集到相關(guān)數(shù)據(jù)如下:

1)根據(jù)以上提供的信息,完成列聯(lián)表,并完善等高條形圖;

選物理

不選物理

總計

數(shù)學(xué)成績優(yōu)秀

數(shù)學(xué)成績不優(yōu)秀

260

總計

600

1000

2)能否在犯錯誤的概率不超過0.05的前提下認(rèn)為數(shù)學(xué)成績優(yōu)秀與選物理有關(guān)?

附:

臨界值表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,則當(dāng)時,討論的單調(diào)性;

(2)若,且當(dāng)時,不等式在區(qū)間上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)的圖象向右平移個單位長度,再把所得的函數(shù)圖象上所有點的橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)得到函數(shù)的圖象,關(guān)于的說法有:①函數(shù)的圖象關(guān)于點對稱;②函數(shù)的圖象的一條對稱軸是;③函數(shù)上的最上的最小值為;④函數(shù)上單調(diào)遞增,則以上說法正確的個數(shù)是(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三位同學(xué)進(jìn)行羽毛球比賽,約定賽制如下:累計負(fù)兩場者被淘汰;比賽前抽簽決定首先比賽的兩人,另一人輪空;每場比賽的勝者與輪空者進(jìn)行下一場比賽,負(fù)者下一場輪空,直至有一人被淘汰;當(dāng)一人被淘汰后,剩余的兩人繼續(xù)比賽,直至其中一人被淘汰,另一人最終獲勝,比賽結(jié)束.經(jīng)抽簽,甲、乙首先比賽,丙輪空.設(shè)每場比賽雙方獲勝的概率都為,

1)求甲連勝四場的概率;

2)求需要進(jìn)行第五場比賽的概率;

3)求丙最終獲勝的概率.

查看答案和解析>>

同步練習(xí)冊答案