【題目】已知函數(shù)

(1)當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)的取值范圍;

(2)是否存在這樣的實(shí)數(shù),使得函數(shù)fx)在區(qū)間上為減函數(shù),并且最大值為?如果存在,試求出的值;如果不存在,請說明理由.

【答案】1; 2)不存在.

【解析】

1)結(jié)合題意得到關(guān)于實(shí)數(shù)的不等式組,求解不等式,即可求解,得到答案;

2)由題意結(jié)合對數(shù)函數(shù)的圖象與性質(zhì),即可求得是否存在滿足題意的實(shí)數(shù)的值,得到答案.

1)由題意,函數(shù),設(shè),

因?yàn)楫?dāng)時(shí),函數(shù)恒有意義,即對任意時(shí)恒成立,

又由,可得函數(shù)上為單調(diào)遞減函數(shù),

則滿足,解得,

所以實(shí)數(shù)的取值范圍是

2)不存在,理由如下:

假設(shè)存在這樣的實(shí)數(shù),使得函數(shù)fx)在區(qū)間上為減函數(shù),并且最大值為,

可得,即,即,解得,即,

又由當(dāng)時(shí),,此時(shí)函數(shù)為意義,

所以這樣的實(shí)數(shù)不存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,,且(n=1,2,...).記
集合
(1)(Ⅰ)若,寫出集合M的所有元素;
(2)(Ⅱ)若集合M存在一個(gè)元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù);
(3)(Ⅲ)求集合M的元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)發(fā)f(x)=(x+1)lnx﹣ax+2.
(1)當(dāng)a=1時(shí),求在x=1處的切線方程;
(2)若函數(shù)f(x)在定義域上具有單調(diào)性,求實(shí)數(shù)a的取值范圍;
(3)求證: ,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖莖葉圖記錄了甲,乙兩班各六名同學(xué)一周的課外閱讀時(shí)間(單位:小時(shí)),已知甲班數(shù)據(jù)的平均數(shù)為13,乙班數(shù)據(jù)的中位數(shù)為17,那么x的位置應(yīng)填;y的位置應(yīng)填

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:mx2+y2=1(m>0).
(Ⅰ)若橢圓E的右焦點(diǎn)坐標(biāo)為 ,求m的值;
(Ⅱ)由橢圓E上不同三點(diǎn)構(gòu)成的三角形稱為橢圓的內(nèi)接三角形.若以B(0,1)為直角頂點(diǎn)的橢圓E的內(nèi)接等腰直角三角形恰有三個(gè),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行所給的程序框圖,則輸出的值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 若S9=81,a3+a5=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,若{bn}的前n項(xiàng)和為Tn , 證明:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)試比較f(﹣1)與f(a)的大;
(Ⅱ)當(dāng)a≥﹣1時(shí),若函數(shù)f(x)的圖象和x軸圍成一個(gè)三角形,則實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二分法是求方程近似解的一種方法,其原理是“一分為二、無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入x1=1,x2=2,d=0.01則輸出n的值(
A.6
B.7
C.8
D.9

查看答案和解析>>

同步練習(xí)冊答案