【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)設(shè)函數(shù),若函數(shù)在區(qū)間上存在正的極值,求實(shí)數(shù)的取值范圍.

【答案】1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2

【解析】

1)求導(dǎo)后,根據(jù)導(dǎo)函數(shù)的正負(fù)可確定所求的單調(diào)區(qū)間;

2)求導(dǎo)后可知的正負(fù)由決定,利用導(dǎo)數(shù)可求得單調(diào)性和最值,根據(jù)上有極值,可知,解不等式求得;分別在兩種情況下,根據(jù)單調(diào)性確定上的極值,結(jié)合導(dǎo)數(shù)確定極值的正負(fù),從而得到結(jié)果.

1)當(dāng)時(shí),,其定義域?yàn)?/span>.

,令得:,令得:,

的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

2,

,,則.

得:,令得:,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

,,顯然.

若函數(shù)在區(qū)間上存在極值,則,解得:.

①當(dāng),即時(shí),一定存在,使得,

不妨設(shè),則此時(shí),在區(qū)間上為負(fù),在區(qū)間上為正,在區(qū)間上為負(fù),

在區(qū)間上為負(fù),在區(qū)間上為正,在區(qū)間上為負(fù),

在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

,.

當(dāng)時(shí),函數(shù)在區(qū)間上存在兩個(gè)極值,,且.

,令,其中.

,在區(qū)間上單調(diào)遞增,

即當(dāng)時(shí),,,

當(dāng)時(shí),函數(shù)在區(qū)間上的極值滿足,即函數(shù)在區(qū)間上存在正的極值.

②當(dāng),即時(shí),一定存在,使得,使得函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.

則函數(shù)在區(qū)間上的極大值是,且,

當(dāng)時(shí),函數(shù)上存在正的極值.

綜上所述:當(dāng)時(shí),函數(shù)在區(qū)間上存在正的極值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓,直線.為圓內(nèi)一點(diǎn),弦過(guò)點(diǎn),過(guò)點(diǎn)的垂線交于點(diǎn).

1)若,求的面積;

2)判斷直線與圓的位置關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓.點(diǎn)E為橢圓在第一象限內(nèi)一點(diǎn),點(diǎn)F在橢圓上且與點(diǎn)E關(guān)于原點(diǎn)對(duì)稱,直線與橢圓交于A,B兩點(diǎn),則點(diǎn)E,F到直線x+y-1=0的距離之和的最大值是________;此時(shí)四邊形AEBF的面積是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)到直線的距離為,過(guò)點(diǎn)的直線交于、兩點(diǎn).

1)求拋物線的準(zhǔn)線方程;

2)設(shè)直線的斜率為,直線的斜率為,若,且的交點(diǎn)在拋物線上,求直線的斜率和點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中e是自然對(duì)數(shù)的底數(shù).

1)若函數(shù)的極大值為,求實(shí)數(shù)a的值;

2)當(dāng)ae時(shí),若曲線處的切線互相垂直,求的值;

3)設(shè)函數(shù),若0對(duì)任意的x(0,1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)正四面體ABCD的頂點(diǎn)A作一個(gè)形狀為等腰三角形的截面,且使截面與底面BCD所成的角為,這樣的截面有(

A.6個(gè)B.12個(gè)C.16個(gè)D.18個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,分別是其左、右焦點(diǎn),過(guò)的直線與橢圓交于兩點(diǎn),且橢圓的離心率為的周長(zhǎng)等于.

1)求橢圓的方程;

2)當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著網(wǎng)上購(gòu)物的普及,傳統(tǒng)的實(shí)體店遭受到了強(qiáng)烈的沖擊,某商場(chǎng)實(shí)體店近九年來(lái)的純利潤(rùn)如下表所示:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

時(shí)間代號(hào)

1

2

3

4

5

6

7

8

9

實(shí)體店純利潤(rùn)(千萬(wàn))

2

2.3

2.5

2.9

3

2.5

2.1

1.7

1.2

根據(jù)這9年的數(shù)據(jù),對(duì)作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.254;根據(jù)后5年的數(shù)據(jù),對(duì)作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.985;

(1)如果要用線性回歸方程預(yù)測(cè)該商場(chǎng)2019年實(shí)體店純利潤(rùn),現(xiàn)有兩個(gè)方案:

方案一:選取這9年的數(shù)據(jù),進(jìn)行預(yù)測(cè);

方案二:選取后5年的數(shù)據(jù)進(jìn)行預(yù)測(cè).

從生活實(shí)際背景以及相關(guān)性檢驗(yàn)的角度分析,你覺(jué)得哪個(gè)方案更合適.

附:相關(guān)性檢驗(yàn)的臨界值表:

小概率

0.05

0.01

3

0.878

0.959

7

0.666

0.798

(2)某機(jī)構(gòu)調(diào)研了大量已經(jīng)開(kāi)店的店主,據(jù)統(tǒng)計(jì),只開(kāi)網(wǎng)店的占調(diào)查總?cè)藬?shù)的,既開(kāi)網(wǎng)店又開(kāi)實(shí)體店的占調(diào)查總?cè)藬?shù)的,現(xiàn)以此調(diào)查統(tǒng)計(jì)結(jié)果作為概率,若從上述統(tǒng)計(jì)的店主中隨機(jī)抽查了5位,求只開(kāi)實(shí)體店的人數(shù)的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家正積極推行垃圾分類工作,教育部辦公廳等六部門也發(fā)布了《關(guān)于在學(xué)校推進(jìn)生活垃圾分類管理工作的通知》.《通知》指出,到2020年底,各學(xué)校生活垃圾分類知識(shí)普及率要達(dá)到100%某市教育主管部門據(jù)此做了哪些活動(dòng)最能促進(jìn)學(xué)生進(jìn)行垃圾分類的問(wèn)卷調(diào)查(每個(gè)受訪者只能在問(wèn)卷的4個(gè)活動(dòng)中選擇一個(gè))如圖是調(diào)查結(jié)果的統(tǒng)計(jì)圖,以下結(jié)論正確的是(  。

A.回答該問(wèn)卷的受訪者中,選擇的(2)和(3)人數(shù)總和比選擇(4)的人數(shù)多

B.回該問(wèn)卷的受訪者中,選擇校園外宣傳的人數(shù)不是最少的

C.回答該問(wèn)卷的受訪者中,選擇(4)的人數(shù)比選擇(2)的人數(shù)可能多30

D.回答該問(wèn)卷的總?cè)藬?shù)不可能是1000

查看答案和解析>>

同步練習(xí)冊(cè)答案