【題目】已知向量 ,其中 , ,k∈R.
(1)當(dāng)k為何值時,有 ;
(2)若向量 的夾角為鈍角,求實數(shù)k的取值范圍.

【答案】
(1)解:由 ,設(shè) ,

所以 ,即 ,

, ,得 不共線,

所以t﹣k=2+t=0,解得k=﹣2


(2)解:因向量 的夾角為鈍角,

所以 ,

,得 ,

所以 ,即k<8,

又向量 不共線,由(1)知k≠﹣2,

所以k<8且k≠﹣2


【解析】(1)根據(jù)題意,設(shè) ,則有 ,結(jié)合向量 、 的坐標(biāo),可得t﹣k=2+t=0,解可得k的值,即可得答案;(2)根據(jù)題意,若向量 的夾角為鈍角,則有 <0,由數(shù)量積的計算公式可得 ,結(jié)合向量不共線分析可得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點為F1 , 右焦點為F2 . 若橢圓上存在一點P,滿足線段PF2相切于以橢圓的短軸為直徑的圓,切點為線段PF2的中點,則該橢圓的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解不等式x2﹣(a+ )x+1<0(a≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左右焦點分別為F1 , F2 , 且F2為拋物線 的焦點,C2的準(zhǔn)線l被C1和圓x2+y2=a2截得的弦長分別為 和4.
(1)求C1和C2的方程;
(2)直線l1過F1且與C2不相交,直線l2過F2且與l1平行,若l1交C1于A,B,l2交C1交于C,D,且在x軸上方,求四邊形AF1F2C的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a、b表示兩條直線,α、β表示兩個平面,則下列命題正確的是 . (填寫所有正確命題的序號) ①若a∥b,a∥α,則b∥α; ②若a∥b,aα,b⊥β,則α⊥β;
③若α∥β,a⊥α,則a⊥β;④若α⊥β,a⊥b,a⊥α,則b⊥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,an+1= (n∈N*).
(1)設(shè)bn= ﹣1,證明:數(shù)列{bn}是等比數(shù)列,并求數(shù)列{an}的通項公式an;
(2)記數(shù)列{nbn}的前n項和為Tn , 求證:Tn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某餐館一天中要購買A,B兩種蔬菜每斤的價格分別為2元和3元,根據(jù)需要,A種蔬菜至少要買6斤,B種蔬菜至少要買4斤,而且一天中購買這兩種蔬菜的總費用不能超過60元.

(1)寫出一天中A種蔬菜購買的數(shù)量x和B種蔬菜購買的數(shù)量y之間的不等式組;
(2)在下面給定的坐標(biāo)系中畫出(1)中不等式組表示的平面區(qū)域(用陰影表示),并求出它的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位擬建一個扇環(huán)形狀的花壇(如圖所示),按設(shè)計要求扇環(huán)的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為x米,圓心角為θ(弧度).
(1)求θ關(guān)于x的函數(shù)關(guān)系式;
(2)已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用之比為y,求y關(guān)于x的函數(shù)關(guān)系式,并求出y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點M(﹣2,0),N(2,0),動點P滿足條件 .記動點P的軌跡為W.
(1)求W的方程;
(2)若A,B是W上的不同兩點,O是坐標(biāo)原點,求 的最小值.

查看答案和解析>>

同步練習(xí)冊答案