已知ab是非零向量且滿足(a-2b)⊥a,(b-2a)⊥b,則ab的夾角是(  )

A.                            B.                            C.                         D.

思路分析:設(shè)ab的夾角是α,∵(a-2b)⊥a,

∴(a-2ba=0,即|a|2-2a·b=0.                                                            ①

又∵(b-2a)⊥b,∴(b-2ab=0,

即|b|2-2a·b=0.                                                                                   ②

由①②,知|a|=|b|,a·b=|a|2=|b|2.

∴cosα=.

ab的夾角為.

答案:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
是非零向量,滿足
a
b
b
a
(λ∈R),則λ=( 。
A、-1B、±1C、0D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
是非零向量,且
a
,
b
夾角為
π
3
,則向量
p
=
a
a
+
b
b
的模為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
b
是非零向量,且滿足(
a
-2
b
)⊥
a
,(
b
-2
a
)⊥
b
,則
a
b
的夾角是
60
60
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
b
是非零向量,t為實(shí)數(shù),設(shè)
u
=
a
+
tb

(1)當(dāng)|
u
|取最小值時(shí),求實(shí)數(shù)t的值;
(2)當(dāng)|
u
|取最小值時(shí),求證
b
⊥(
a
+
b
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
b
是非零向量,若|
a
-
b
|=|
a
|-|
b
|,則
a
,
b
應(yīng)滿足條件
 

查看答案和解析>>

同步練習(xí)冊(cè)答案