【題目】點(diǎn)P為棱長(zhǎng)是2的正方體的內(nèi)切球O球面上的動(dòng)點(diǎn),點(diǎn)M為的中點(diǎn),若滿足,則動(dòng)點(diǎn)P的軌跡的長(zhǎng)度為( )
A.B.C.D.
【答案】C
【解析】
根據(jù)正方體的性質(zhì)及,可判斷點(diǎn)的軌跡為平面與內(nèi)切球的交線,即所得小圓的圓周即為動(dòng)點(diǎn)的軌跡.結(jié)合球的幾何性質(zhì),即可求得小圓的周長(zhǎng),即為動(dòng)點(diǎn)P的軌跡長(zhǎng)度.
根據(jù)題意,點(diǎn)P為棱長(zhǎng)是2的正方體的內(nèi)切球O球面上的動(dòng)點(diǎn),點(diǎn)M為的中點(diǎn),設(shè)中點(diǎn)為,中點(diǎn)為,如下圖所示:
在平面中,
由題意可知,
為在平面內(nèi)的射影,所以直線在過(guò)點(diǎn)且與垂直的平面內(nèi)
又因?yàn)?/span>在正方體內(nèi)切球的球面上
所以點(diǎn)的軌跡為正方體的內(nèi)切球與過(guò)且與垂直的平面相交得到的小圓,即的軌跡為過(guò)的平面即為平面與內(nèi)切球的交線
因?yàn)?/span>位于平面內(nèi),
設(shè)到平面的距離為
所以由,可得
代入可得,解得
正方體的內(nèi)切球半徑為
由圓的幾何性質(zhì)可得所截小圓的半徑為
所以小圓的周長(zhǎng)為
即動(dòng)點(diǎn)P的軌跡的長(zhǎng)度為
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌餐飲公司準(zhǔn)備在10個(gè)規(guī)模相當(dāng)?shù)牡貐^(qū)開設(shè)加盟店,為合理安排各地區(qū)加盟店的個(gè)數(shù),先在其中5個(gè)地區(qū)試點(diǎn),得到試點(diǎn)地區(qū)加盟店個(gè)數(shù)分別為1,2,3,4,5時(shí),單店日平均營(yíng)業(yè)額(萬(wàn)元)的數(shù)據(jù)如下:
加盟店個(gè)數(shù)(個(gè)) | 1 | 2 | 3 | 4 | 5 |
單店日平均營(yíng)業(yè)額(萬(wàn)元) | 10.9 | 10.2 | 9 | 7.8 | 7.1 |
(1)求單店日平均營(yíng)業(yè)額(萬(wàn)元)與所在地區(qū)加盟店個(gè)數(shù)(個(gè))的線性回歸方程;
(2)根據(jù)試點(diǎn)調(diào)研結(jié)果,為保證規(guī)模和效益,在其他5個(gè)地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營(yíng)業(yè)額預(yù)計(jì)值總和不低于35萬(wàn)元,求一個(gè)地區(qū)開設(shè)加盟店個(gè)數(shù)的所有可能取值;
(3)小趙與小王都準(zhǔn)備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個(gè)地區(qū)(加盟店都不少于2個(gè))中隨機(jī)選一個(gè)地區(qū)加入,求他們選取的地區(qū)相同的概率.
(參考數(shù)據(jù)及公式:,,線性回歸方程,其中,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足.
(1)求角;
(2)若,___________________(從下列問(wèn)題中任選一個(gè)作答,若選擇多個(gè)條件分別解答,則按選擇的第一個(gè)解答計(jì)分).
①的面積為,求的周長(zhǎng);
②的周長(zhǎng)為21,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】世界互聯(lián)網(wǎng)大會(huì)是由中國(guó)倡導(dǎo)并每年在浙江省嘉興市桐鄉(xiāng)烏鎮(zhèn)舉辦的世界性互聯(lián)網(wǎng)盛會(huì),大會(huì)旨在搭建中國(guó)與世界互聯(lián)互通的國(guó)際平臺(tái)和國(guó)際互聯(lián)網(wǎng)共享共治的中國(guó)平臺(tái),讓各國(guó)在爭(zhēng)議中求共識(shí)在共識(shí)中謀合作在合作中創(chuàng)共贏.2019年10月20日至22日,第六屆世界互聯(lián)網(wǎng)大會(huì)如期舉行,為了大會(huì)順利召開,組委會(huì)特招募了1 000名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(1)求,的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)這次大會(huì)志愿者主要通過(guò)現(xiàn)場(chǎng)報(bào)名和登錄大會(huì)官網(wǎng)報(bào)名,即現(xiàn)場(chǎng)和網(wǎng)絡(luò)兩種方式報(bào)名調(diào)查.這100位志愿者的報(bào)名方式部分?jǐn)?shù)據(jù)如下表所示,完善下面的表格,通過(guò)計(jì)算說(shuō)明能
否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為“選擇哪種報(bào)名方式與性別有關(guān)系”?
男性 | 女性 | 總計(jì) | |
現(xiàn)場(chǎng)報(bào)名 | 50 | ||
網(wǎng)絡(luò)報(bào)名 | 31 | ||
總計(jì) | 50 |
參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A、B兩點(diǎn)的坐標(biāo)分別為(0,1)、(0,﹣1),動(dòng)點(diǎn)P滿足直線AP與直線BP的斜率之積為,直線AP、BP與直線y=﹣2分別交于點(diǎn)M、N.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)求線段MN的最小值;
(3)以MN為直徑的圓是否經(jīng)過(guò)某定點(diǎn)?若經(jīng)過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性
(2)當(dāng)時(shí),,對(duì)任意,都有恒成立,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】銀川市房管局為了了解該市市民2018年1月至2019年1月期間購(gòu)買二手房情況,首先隨機(jī)抽樣其中200名購(gòu)房者,并對(duì)其購(gòu)房面積m(單位:平方米,)進(jìn)行了一次調(diào)查統(tǒng)計(jì),制成了如圖所示的頻率分布直方圖.
(Ⅰ)試估計(jì)該市市民的平均購(gòu)房面積:
(Ⅱ)現(xiàn)采用分層抽樣的方法從購(gòu)房面積位于的40位市民中隨機(jī)取4人,再?gòu)倪@4人中隨機(jī)抽取2人,求這2人的購(gòu)房面積恰好有一人在的概率,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x),g(x)1.
(1)若f(a)=2,求實(shí)數(shù)a的值;
(2)判斷f(x)的單調(diào)性,并證明;
(3)設(shè)函數(shù)h(x)=g(x)(x>0),若h(2t)+mh(t)+4>0對(duì)任意的正實(shí)數(shù)t恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定一個(gè)n項(xiàng)的實(shí)數(shù)列,任意選取一個(gè)實(shí)數(shù)c,變換T(c)將數(shù)列a1,a2,…,an變換為數(shù)列|a1﹣c|,|a2﹣c|,…,|an﹣c|,再將得到的數(shù)列繼續(xù)實(shí)施這樣的變換,這樣的變換可以連續(xù)進(jìn)行多次,并且每次所選擇的實(shí)數(shù)c可以不相同,第k(k∈N*)次變換記為Tk(ck),其中ck為第k次變換時(shí)選擇的實(shí)數(shù).如果通過(guò)k次變換后,數(shù)列中的各項(xiàng)均為0,則稱T1(c1),T2(c2),…,Tk(ck)為“k次歸零變換”.
(1)對(duì)數(shù)列:1,3,5,7,給出一個(gè)“k次歸零變換”,其中k≤4;
(2)證明:對(duì)任意n項(xiàng)數(shù)列,都存在“n次歸零變換”;
(3)對(duì)于數(shù)列1,22,33,…,nn,是否存在“n﹣1次歸零變換”?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com