【題目】如圖,某大型廠區(qū)有三個值班室,值班室在值班室的正北方向千米處,值班室在值班室的正東方向千米處.

1)保安甲沿從值班室出發(fā)行至點處,此時,求的距離;

2)保安甲沿從值班室出發(fā)前往值班室,保安乙沿從值班室出發(fā)前往值班室,甲乙同時出發(fā),甲的速度為千米/小時,乙的速度為千米/小時,若甲乙兩人通過對講機(jī)聯(lián)系,對講機(jī)在廠區(qū)內(nèi)的最大通話距離為千米(含千米),試問有多長時間兩人不能通話?

【答案】1;(2小時.

【解析】

1)在中求得后,在中利用余弦定理可求得結(jié)果;

2)設(shè)甲乙出發(fā)后的時間為小時,在中,利用余弦定理可用表示出,解可求得結(jié)果.

1)在中,,,則,,

中,由余弦定理得:,

2)設(shè)甲乙出發(fā)后的時間為小時,甲在線段上的位置為,乙在線段上的位置為,則,,且,

由(1)知:,

中,由余弦定理得:

,

若甲乙不能通話,則,即,解得:,

,,

兩人不能通話的時間為小時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)運動計步已成為一種時尚,某中學(xué)統(tǒng)計了該校教職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:

(Ⅰ)求直方圖中的值,并由頻率分布直方圖估計該校教職工一天步行數(shù)的中位數(shù);

(Ⅱ)若該校有教職工175人,試估計一天行走步數(shù)不大于130百步的人數(shù);

(Ⅲ)在(Ⅱ)的條件下該校從行走步數(shù)大于150百步的3組教職工中用分層抽樣的方法選取6人參加遠(yuǎn)足活動,再從6人中選取2人擔(dān)任領(lǐng)隊,求這兩人均來自區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為t為參數(shù),.在以O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

1)求的普通方程;

2)若直線l的極坐標(biāo)方程為,其中滿足,若曲線的公共點均在l上,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)討論的單調(diào)性;

2)設(shè),若上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了政府對過熱的房地產(chǎn)市場進(jìn)行調(diào)控決策,統(tǒng)計部門對城市人和農(nóng)村人進(jìn)行了買房的心理預(yù)期調(diào)研,用簡單隨機(jī)抽樣的方法抽取110人進(jìn)行統(tǒng)計,得到如下列聯(lián)表:

買房

不買房

糾結(jié)

城市人

5

15

農(nóng)村人

20

10

已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.

分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);

用獨立性檢驗的思想方法說明在這三種買房的心理預(yù)期中哪一種與城鄉(xiāng)有關(guān)?

參考公式:

k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,數(shù)列中的每一項均在集合中,且任意兩項不相等,又對于任意的整數(shù),均有.例如時,數(shù)列

1)當(dāng)時,試求滿足條件的數(shù)列的個數(shù);

2)當(dāng),求所有滿足條件的數(shù)列的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知點,的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)設(shè)曲線與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯發(fā)現(xiàn):平面上到兩定點,距離之比為常數(shù)的點的軌跡是一個圓心在直線上的圓,該圓簡稱為阿氏圓.根據(jù)以上信息,解決下面的問題:如圖,在長方體中,,點在棱上,,動點滿足.若點在平面內(nèi)運動,則點所形成的阿氏圓的半徑為________;若點在長方體內(nèi)部運動,為棱的中點,的中點,則三棱錐的體積的最小值為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求證:當(dāng)x(0,π]時,f(x)<1;

2)求證:當(dāng)m2時,對任意x0(0,π] ,存在x1(0,π]x2(0,π](x1x2)使g(x1)=g(x2)=f(x0)成立.

查看答案和解析>>

同步練習(xí)冊答案