【題目】設(shè)函數(shù)

1)討論的單調(diào)性;

2)設(shè),若上恒成立,求a的取值范圍.

【答案】1)當(dāng)時(shí),上單遞增;當(dāng)時(shí),上單調(diào)遞減,上單調(diào)遞增;(2

【解析】

1)求導(dǎo),對(duì)參數(shù)進(jìn)行分類討論,根據(jù)導(dǎo)數(shù)的正負(fù)即可容易判斷函數(shù)單調(diào)性;

2)對(duì)參數(shù)進(jìn)行分類討論,根據(jù)函數(shù)的單調(diào)性,結(jié)合函數(shù)的最值,即可求得結(jié)果.

1定義域?yàn)?/span>,

當(dāng)時(shí),上恒成立,此時(shí)上單遞增;

當(dāng)時(shí),令(舍去)

當(dāng)時(shí),,此時(shí)單調(diào)遞減

當(dāng)時(shí),,此時(shí)單調(diào)遞增

綜上:當(dāng)時(shí),上單遞增

當(dāng)時(shí),上單調(diào)遞減

上單調(diào)遞增

2)由題意,上恒成立.

①若,

,則

,,

上單調(diào)遞增,成立,

時(shí),成立.

②若時(shí),令,,

上單調(diào)遞增﹐即有

,即

要使成立,必有成立.

由(1)可知,時(shí),,又

則必有,得

此時(shí),

恒成立,故上單調(diào)遞增,

時(shí),成立.

綜上,a的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某地中小學(xué)生的近視形成原因,教育部門委托醫(yī)療機(jī)構(gòu)對(duì)該地所有中小學(xué)生的視力做了一次普查.現(xiàn)該地中小學(xué)生人數(shù)和普查得到的近視情況分別如圖1和圖2所示.

(1)求該地中小學(xué)生的平均近視率(保留兩位有效數(shù)字);

(2)為調(diào)查中學(xué)生用眼衛(wèi)生習(xí)慣,該地用分層抽樣的方法從所有初中生和高中生中確定5人進(jìn)行問(wèn)卷調(diào)查,再?gòu)倪@5人中隨機(jī)選取2人繼續(xù)訪談,則此2人全部來(lái)自高中年級(jí)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)有3個(gè)不同值班地點(diǎn),每個(gè)值班地點(diǎn)需配一名醫(yī)務(wù)人員和兩名警察,現(xiàn)將3名醫(yī)務(wù)人員(12女)和6名警察(42女)分配到這3個(gè)地點(diǎn)去值班,要求每個(gè)值班地點(diǎn)至少有一名女性,則共有______種不同分配方案.(用具體數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),以軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為常數(shù),且),直線與曲線交于兩點(diǎn).

1)若,求實(shí)數(shù)的值;

2)若點(diǎn)的直角坐標(biāo)為,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019冠狀病毒。CoronaVirus Disease2019COVID-19))是由新型冠狀病毒(2019-nCoV)引發(fā)的疾病,目前全球感染者以百萬(wàn)計(jì),我國(guó)在黨中央、國(guó)務(wù)院、中央軍委的堅(jiān)強(qiáng)領(lǐng)導(dǎo)下,已經(jīng)率先控制住疫情,但目前疫情防控形勢(shì)依然嚴(yán)峻,湖北省中小學(xué)依然延期開學(xué),所有學(xué)生按照停課不停學(xué)的要求,居家學(xué)習(xí).小李同學(xué)在居家學(xué)習(xí)期間,從網(wǎng)上購(gòu)買了一套高考數(shù)學(xué)沖刺模擬試卷,快遞員計(jì)劃在下午400500之間送貨到小區(qū)門口的快遞柜中,小李同學(xué)父親參加防疫志愿服務(wù),按規(guī)定,他換班回家的時(shí)間在下午430500,則小李父親收到試卷無(wú)需等待的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若存在兩個(gè)極值點(diǎn),且關(guān)于的方程恰有三個(gè)實(shí)數(shù)根,,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某大型廠區(qū)有三個(gè)值班室,值班室在值班室的正北方向千米處,值班室在值班室的正東方向千米處.

1)保安甲沿從值班室出發(fā)行至點(diǎn)處,此時(shí),求的距離;

2)保安甲沿從值班室出發(fā)前往值班室,保安乙沿從值班室出發(fā)前往值班室,甲乙同時(shí)出發(fā),甲的速度為千米/小時(shí),乙的速度為千米/小時(shí),若甲乙兩人通過(guò)對(duì)講機(jī)聯(lián)系,對(duì)講機(jī)在廠區(qū)內(nèi)的最大通話距離為千米(含千米),試問(wèn)有多長(zhǎng)時(shí)間兩人不能通話?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若的極值點(diǎn),求a的值及的單調(diào)區(qū)間;

2)若對(duì)任意,不等式成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對(duì)幾何學(xué)、力學(xué)等學(xué)科作出過(guò)卓越貢獻(xiàn).為調(diào)查中學(xué)生對(duì)這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請(qǐng)他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”.

調(diào)查結(jié)果如下:

0項(xiàng)

1項(xiàng)

2項(xiàng)

3項(xiàng)

4項(xiàng)

5項(xiàng)

5項(xiàng)以上

理科生(人)

1

10

17

14

14

10

4

文科生(人)

0

8

10

6

3

2

1

(1)完成如下列表,并判斷是否由的把握認(rèn)為.了解阿基米德與選擇文理科有關(guān)?

比較了解

不太了解

合計(jì)

理科生

p>

文科生

合計(jì)

(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

(i)求抽取的文科生和理科生的人數(shù);

(ii)從10人的樣本中隨機(jī)抽取兩人,求兩人都是文科生的概率.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

同步練習(xí)冊(cè)答案