【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程,曲線的參數(shù)方程;

(2)若分別為曲線,上的動點,求的最小值,并求取得最小值時,點的直角坐標(biāo).

【答案】(1) ,的參數(shù)方程為為參數(shù)). (2)

【解析】

(1)由參數(shù)方程、普通直角坐標(biāo)方程及極坐標(biāo)方程間的關(guān)系轉(zhuǎn)化即可;(2)結(jié)合(1)的結(jié)論,設(shè),利用點到直線的距離公式可得到的表達(dá)式,利用三角函數(shù)求最值即可得到的最小值,即的最小值,進(jìn)而可以得到點的直角坐標(biāo)。

(1)由曲線的參數(shù)方程為為參數(shù)),

消去,得,

,

,

,即,

的參數(shù)方程為為參數(shù)).

(2)設(shè)曲線上動點為Q,則點到直線的距離:

d=,

當(dāng)時,即時,取得最小值,即的最小值為,

,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線焦點為,點A,BC為該拋物線上不同的三點,且滿足.

(1)求;

(2)若直線軸于點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),R.

(1)試討論函數(shù)的極值點的個數(shù);

(2)若N*,且恒成立,求的最大值.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:

空調(diào)類

冰箱類

小家電類

其它類

營業(yè)收入占比

90.10%

4.98%

3.82%

1.10%

凈利潤占比

95.80%

3.82%

0.86%

則下列判斷中不正確的是(

A.該公司2018年度冰箱類電器銷售虧損

B.該公司2018年度小家電類電器營業(yè)收入和凈利潤相同

C.該公司2018年度凈利潤主要由空調(diào)類電器銷售提供

D.剔除冰箱類銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤占比將會降低

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程,曲線的參數(shù)方程;

(2)若分別為曲線,上的動點,求的最小值,并求取得最小值時,點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)滿足fx)=f(2-x),且f(1)=6,f(3)=2.

(1)求fx)的解析式

(2)是否存在實數(shù)m,使得在[-1,3]上fx)的圖象恒在直線y=2mx+1的上方?若存在,求m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,則下列命題正確的是(

A.當(dāng)時,

B.函數(shù)3個零點

C.的解集為

D.,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)時,證明:

(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線

(1)求曲線在點處的切線方程;

(2)求曲線過點的切線方程

查看答案和解析>>

同步練習(xí)冊答案