【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程,曲線的參數(shù)方程;
(2)若分別為曲線,上的動點,求的最小值,并求取得最小值時,點的直角坐標(biāo).
【答案】(1) ,的參數(shù)方程為(為參數(shù)). (2)
【解析】
(1)由參數(shù)方程、普通直角坐標(biāo)方程及極坐標(biāo)方程間的關(guān)系轉(zhuǎn)化即可;(2)結(jié)合(1)的結(jié)論,設(shè),利用點到直線的距離公式可得到的表達(dá)式,利用三角函數(shù)求最值即可得到的最小值,即的最小值,進(jìn)而可以得到點的直角坐標(biāo)。
(1)由曲線的參數(shù)方程為(為參數(shù)),
消去,得,
由,
即,
,即,
的參數(shù)方程為(為參數(shù)).
(2)設(shè)曲線上動點為Q,則點到直線的距離:
d=,
當(dāng)時,即時,取得最小值,即的最小值為,
,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線焦點為,點A,B,C為該拋物線上不同的三點,且滿足.
(1)求;
(2)若直線交軸于點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),R.
(1)試討論函數(shù)的極值點的個數(shù);
(2)若N*,且恒成立,求的最大值.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:
空調(diào)類 | 冰箱類 | 小家電類 | 其它類 | |
營業(yè)收入占比 | 90.10% | 4.98% | 3.82% | 1.10% |
凈利潤占比 | 95.80% | 3.82% | 0.86% |
則下列判斷中不正確的是( )
A.該公司2018年度冰箱類電器銷售虧損
B.該公司2018年度小家電類電器營業(yè)收入和凈利潤相同
C.該公司2018年度凈利潤主要由空調(diào)類電器銷售提供
D.剔除冰箱類銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤占比將會降低
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程,曲線的參數(shù)方程;
(2)若分別為曲線,上的動點,求的最小值,并求取得最小值時,點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(x)=f(2-x),且f(1)=6,f(3)=2.
(1)求f(x)的解析式
(2)是否存在實數(shù)m,使得在[-1,3]上f(x)的圖象恒在直線y=2mx+1的上方?若存在,求m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,則下列命題正確的是( )
A.當(dāng)時,
B.函數(shù)有3個零點
C.的解集為
D.,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時,證明:;
(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com