【題目】在如圖所示的幾何體中,四邊形為正方形,平面,,,.
(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值;
(Ⅲ)在棱上是否存在一點,使得平面平面?如果存在,求的值;如果不存在,說明理由.
【答案】(Ⅰ)見解析;(Ⅱ);(Ⅲ).
【解析】
試題(Ⅰ)設(shè)中點為,連結(jié),易證得四邊形為平行四邊形,從而結(jié)合正方形的性質(zhì)得到四邊形為平行四邊形,進而使問題得證;(Ⅱ)以點的原點建立空間坐標(biāo)系,得到相關(guān)點坐標(biāo)及向量,求出平面的一個法向量,從而由空間夾角公式求解;(Ⅲ)由平面平面,得到兩平面的法向量乘積為0,從面求得點的坐標(biāo),進而求得的值.
試題解析:(Ⅰ)設(shè)中點為,連結(jié),
因為,且,
所以且,
所以四邊形為平行四邊形,
所以,且.
因為正方形,所以,
所以,且,
所以四邊形為平行四邊形,
所以.
因為平面,平面,
所以平面.
(Ⅱ)如圖建立空間坐標(biāo)系,則,,,,,
所以,,.
設(shè)平面的一個法向量為,所以.
令,則,所以.
設(shè)與平面所成角為,
則.
所以與平面所成角的正弦值是.
(Ⅲ)依題意,可設(shè),則,.
設(shè)平面的一個法向量為,則.
令,則,所以.
因為平面平面,
所以,即,
所以, 點,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了解社區(qū)群眾體育活動的開展情況,擬采用分層抽樣的方法從A,B,C三個行政區(qū)抽出6個社區(qū)進行調(diào)查.已知A,B,C行政區(qū)中分別有12,18,6個社區(qū).
(1)求從A,B,C三個行政區(qū)中分別抽取的社區(qū)個數(shù);
(2)若從抽得的6個社區(qū)中隨機的抽取2個進行調(diào)查結(jié)果的對比,求抽取的2個社區(qū)中至少有一個來自A行政區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線C:的焦點為F,過F的直線交拋物線C于A,B兩點.
(1)求線段AF的中點M的軌跡方程;
(2)已知△AOB的面積是△BOF面積的3倍,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:,過焦點F的直線l與拋物線C交于M,N兩點.
(1)若直線l的傾斜角為,求的長;
(2)設(shè)M在準(zhǔn)線上的射影為A,求證:A,O,N三點共線(O為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:①任意兩條直線都可以確定一個平面;②若兩個平面有3個不同的公共點,則這兩個平面重合;③直線a,b,c,若a與b共面,b與c共面,則a與c共面;④若直線l上有一點在平面α外,則l在平面α外.其中錯誤命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,對于任一給定的四面體,找出依次排列的四個相互平行的平面,,,,使得,且其中每相鄰兩個平面間的距離都相等;
(2)給定依次排列的四個相互平行的平面,,,,其中每相鄰兩個平面間的距離為1,若一個正四面體的四個頂點滿足:,求該正四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長為2的菱形,且,平面,,,點是線段上任意一點.
(1)證明:平面平面;
(2)若的最大值是,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在區(qū)間上, , , , , , 均可為一個三角形的三邊長,則稱函數(shù)為“三角形函數(shù)”.已知函數(shù)在區(qū)間上是“三角形函數(shù)”,則實數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com