【題目】已知橢圓 的短軸長為2,且函數(shù)的圖象與橢圓僅有兩個公共點(diǎn),過原點(diǎn)的直線與橢圓交于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)點(diǎn)為線段的中垂線與橢圓的一個公共點(diǎn),求面積的最小值,并求此時直線的方程.

【答案】(1);(2)的面積的最小值為,此時直線的方程為.

【解析】試題分析】(1)依據(jù)題設(shè)條件建立方程求解;(2)先建立直線的方程,再與橢圓方程聯(lián)立,運(yùn)用坐標(biāo)建立關(guān)于三角形面積公式的目標(biāo)函數(shù)求解:

(1)由題意可知, ,則,

聯(lián)立,得:

根據(jù)橢圓與拋物線的對稱性,可得

,又,

,∴橢圓的標(biāo)準(zhǔn)方程為.

(2)①當(dāng)直線的斜率不存在時, ;當(dāng)直線的斜率為0時, ,

②當(dāng)直線的斜率存在且不為0時,設(shè)直線的方程為,由,得,

,

由題意可知線段的中垂線方程為,由,得

,

,當(dāng)且僅當(dāng),即時等號成立,此時的面積取得最小值,

,∴的面積的最小值為,此時直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體,是棱上的一點(diǎn)

1求證:平面;

2求證:

3是棱的中點(diǎn),在棱上是否存在點(diǎn),使得平面?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的普通方程;

2)經(jīng)過點(diǎn)(平面直角坐標(biāo)系中點(diǎn))作直線交曲線, 兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個關(guān)于數(shù)列命題:

(1)若是等差數(shù)列,則三點(diǎn)、共線;

(2)若是等比數(shù)列,則、 ()也是等比數(shù)列;

3等比數(shù)列的前n項(xiàng)和為,若對任意的,點(diǎn)均在函數(shù) (, 均為常數(shù))的圖象上,則r的值為.

4對于數(shù)列,定義數(shù)列為數(shù)列的“差數(shù)列”,若, 的“差數(shù)列”的通項(xiàng)為,則數(shù)列的前項(xiàng)和

其中正確命題的個數(shù)是 ( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國好聲音()》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強(qiáng)力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012713日在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對歌手,當(dāng)每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團(tuán)隊(duì)中接受指導(dǎo)訓(xùn)練.已知某期《中國好聲音》中,6位選手唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:

導(dǎo)師轉(zhuǎn)身人數(shù)(人)

4

3

2

1

獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人)

1

2

2

1

現(xiàn)從這6位選手中隨機(jī)抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.

1)請列出所有的基本事件;

2)求兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)寫出所有與終邊相同的角;

(2)寫出在內(nèi)與終邊相同的角;

(3)若角終邊相同,則是第幾象限的角?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

1求證:曲線在點(diǎn)處的切線過定點(diǎn);

2在區(qū)間上的極大值,但不是最大值,求實(shí)數(shù)的取值范圍;

3求證:對任意給定的正數(shù) ,總存在,使得上為單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 平面, , , , 的中點(diǎn).

(Ⅰ)證明: 平面;

(Ⅱ)求多面體的體積;

(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】漳州市博物館為了保護(hù)一件珍貴文物,需要在館內(nèi)一種透明又密封的長方體玻璃保護(hù)罩內(nèi)充入保護(hù)液體.該博物館需要支付的總費(fèi)用由兩部分組成:①罩內(nèi)該種液體的體積比保護(hù)罩的容積少0.5立方米,且每立方米液體費(fèi)用500元;②需支付一定的保險(xiǎn)費(fèi)用,且支付的保險(xiǎn)費(fèi)用與保護(hù)罩容積成反比,當(dāng)容積為2立方米時,支付的保險(xiǎn)費(fèi)用為4000元.

(Ⅰ)求該博物館支付總費(fèi)用與保護(hù)罩容積之間的函數(shù)關(guān)系式;

(Ⅱ)求該博物館支付總費(fèi)用的最小值.

查看答案和解析>>

同步練習(xí)冊答案