【題目】已知拋物線,直線與拋物線交于兩點.

(Ⅰ)若,求以為直徑的圓被軸所截得的弦長;

(Ⅱ)分別過點作拋物線的切線,兩條切線交于點,求面積的最小值.

【答案】I4;

II4

【解析】

設(shè),,聯(lián)立直線和拋物線的方程,運用韋達(dá)定理,

I)運用弦長公式可得,以及直線和圓相交的弦長公式,計算可得所求值;

II)對求導(dǎo),求得切線的斜率和方程,聯(lián)立方程求得交點E的坐標(biāo),以及E到直線AB的距離,弦長,再由三角形的面積公式,計算可得所求最小值.

設(shè),

聯(lián)立得:

由韋達(dá)定理得:,,

I)當(dāng)時,

,

,

設(shè)的中點為,則,

∴以為直徑的圓被軸所截得的弦長為

;

II)對求導(dǎo),得,即,

直線的方程為,

同理,直線的方程為,

設(shè),聯(lián)立的方程,

解得,

到直線的距離,

,

所以的面積

,

當(dāng)且僅當(dāng)時取等號,

綜上,面積的最小值為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy上取兩個定點A1,0),A2,0),再取兩個動點N10,m),N20n),且mn2.

1)求直線A1N1A2N2交點M的軌跡C的方程;

2)過R3,0)的直線與軌跡C交于PQ,過PPNx軸且與軌跡C交于另一點NF為軌跡C的右焦點,若λ1),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對稱軸為坐標(biāo)軸的橢圓的焦點為,,上.

(1)求橢圓的方程;

(2)設(shè)不過原點的直線與橢圓交于,兩點,且直線,的斜率依次成等比數(shù)列,則當(dāng)的面積為時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱中,為等邊三角形,,平面,是線段上靠近的三等分點.

1)求證:;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線C)的焦點為F,經(jīng)過點F的動直線l交拋物線C,兩點,且.

1)求拋物線C的方程;

2)若O為坐標(biāo)原點),且點E在拋物線C上,求直線l的傾斜角;

3)若點M是拋物線C的準(zhǔn)線上的一點,直線,,斜率分別為,,求證:當(dāng)為定值時,也為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線與拋物線交于兩點.

(Ⅰ)若,求以為直徑的圓被軸所截得的弦長;

(Ⅱ)分別過點作拋物線的切線,兩條切線交于點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”.三國時期,吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形中較小的銳角,現(xiàn)在向該正方形區(qū)域內(nèi)隨機(jī)地投擲100枚飛鏢,則估計飛鏢落在區(qū)域1的枚數(shù)最有可能是(

A.30B.40C.50D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三國時代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個以勾股之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用×+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+2=2,設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為(

A.134B.866C.300D.188

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等腰梯形中,,的中點.將沿折起后如圖2,使二面角成直二面角,設(shè)的中點,是棱的中

點.

1)求證:;

2)求證:平面平面;

3)判斷能否垂直于平面,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案