18、在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求證:BC⊥平面PBD;
(2)設(shè)E為側(cè)棱PC上一點,數(shù)學公式,試確定λ的值,使得二面角E-BD-P的大小為45°.

解:(1)證明:平面PCD⊥底面ABCD,PD⊥CD,所以PD⊥平面ABCD,
所以PD⊥AD.如圖,以D為原點建立空間直角坐標系D-xyz.
則A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1)(6分)=(-1,1,0).
所以=0,BC⊥DB,
又由PD⊥平面ABCD,可得PD⊥BC,又BD∩PD=D
所以BC⊥平面PBD.(8分)
(2)平面PBD的法向量為=(-1,1,0),,λ∈(0,1),所以E(0,2λ,1-λ),
設(shè)平面QBD的法向量為n=(a,b,c),=(0,2λ,1-λ)
由n•=0,n•=0,得所以,
,(10分)
由cos解得λ=-1(12分)
(用傳統(tǒng)方法解得答案酌情給分)
分析:(1)由題設(shè)條件可證得DP,DA,DC三線兩兩垂直,故可以D為原點建立空間直角坐標系D-xyz,按題中所給的條件,給出各點的坐標,求出直線BC的方向向量以及平面PBD的法向量,由數(shù)量積為0證明線面垂直.
(2)由(1)中的坐標系,及E為側(cè)棱PC上一點,,給出用參數(shù)表示的點E的坐標,求出兩個平面EBD與平面PBD的法向量,由公式用參數(shù)表示出二面角的余弦值,再令其值是45°的余弦值,解出其參數(shù)值即可.
點評:本題考查二面角的平面角的求法,本題解答用的是向量法,求解此類題,關(guān)鍵是掌握住向量公式與所求解問題的對應(yīng),建立合適的空間坐標系可以大大降低運算的難度,此種做法運算量較大,解題時要認真嚴謹,避免運算出錯,導致解題失。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面為直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分別為PC、PB的中點.
(1)求證:PB⊥DM;
(2)求BD與平面ADMN所成角的大。
(3)求二面角B-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于點N,M是PD中點.
(1)用空間向量證明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直線CD與平面ACM所成的角的正弦值.
(3)求點N到平面ACM的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,O為底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中點
(1)求證:直線MO∥平面PAB;
(2)求證:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求證:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•成都模擬)如圖,在四棱錐P-ABCD中,底面ABCD為正方形,且PD⊥平面ABCD,PD=AB=1,EF分別是PB、AD的中點,
(I)證明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大。

查看答案和解析>>

同步練習冊答案